Applying Bayesian Optimization for Calibration of Transportation Simulation Models

同时扰动随机逼近 计算机科学 贝叶斯优化 稳健性(进化) 趋同(经济学) 校准 算法 随机模拟 贝叶斯概率 数学优化 随机过程 机器学习 数学 人工智能 统计 生物化学 基因 经济 经济增长 化学
作者
Di Sha,Kaan Özbay,Yue Ding
出处
期刊:Transportation Research Record [SAGE]
卷期号:2674 (10): 215-228 被引量:28
标识
DOI:10.1177/0361198120936252
摘要

The parameters of a transportation simulation model need to pass through a careful calibration process to ensure that the model’s output is as close as possible to the actual system. Owing to the computationally expensive and black-box nature of a simulation model, there is a need for robust and efficient calibration algorithms. This paper proposes a Bayesian optimization framework for the high-dimensional calibration problem of transportation simulation models. Bayesian optimization uses acquisition functions to determine more promising values for future evaluation, instead of relying on local gradient approximations. It guarantees convergence to the global optimum with a reduced number of evaluations, therefore is very computationally efficient. The proposed algorithm is applied to the calibration of a simulation network coded in simulation of urban mobility (SUMO), an open-source microscopic transportation simulation platform, and compared with a well-known method named simultaneous perturbation stochastic approximation (SPSA). To assess the calibration accuracy, speed distributions obtained from the two models calibrated using these two different methods are compared with the observation. For both the Bayesian optimization and SPSA results, the simulated and observed distributions are validated to be from the same distribution at a 95% confidence level for multiple sensor locations. Thus, the calibration accuracy of the two approaches are both acceptable for a stochastic transportation simulation model. However, Bayesian optimization shows a better convergence and a higher computational efficiency than SPSA. In addition, the comparative results of multiple implementations validate its robustness for a noisy objective function, unlike SPSA which may sometimes get stuck in a local optimum and fail to converge in a global solution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
集力申完成签到,获得积分10
1秒前
Pumpkin发布了新的文献求助10
1秒前
1秒前
科研通AI2S应助玉米烤肠采纳,获得10
2秒前
2秒前
hhhhhh完成签到,获得积分10
3秒前
4秒前
梦梦完成签到 ,获得积分10
4秒前
果果完成签到,获得积分10
5秒前
忐忑的篮球完成签到 ,获得积分10
6秒前
科研通AI2S应助动人的绫采纳,获得10
6秒前
沉默的冬寒完成签到 ,获得积分10
7秒前
7秒前
7秒前
Lou完成签到,获得积分10
7秒前
9秒前
邢夏之完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
11秒前
烟花应助jinl9587采纳,获得10
11秒前
懂懂完成签到,获得积分20
12秒前
鹿尚发布了新的文献求助10
13秒前
xuhang发布了新的文献求助10
13秒前
搜集达人应助zhangyuan采纳,获得10
13秒前
Vxxxx发布了新的文献求助10
13秒前
唠叨的夜雪完成签到,获得积分10
13秒前
在水一方应助如意的新梅采纳,获得10
13秒前
14秒前
Liar发布了新的文献求助10
14秒前
15秒前
15秒前
无悔呀发布了新的文献求助10
16秒前
慕青应助科研通管家采纳,获得10
16秒前
16秒前
Jasper应助科研通管家采纳,获得10
16秒前
英俊的铭应助科研通管家采纳,获得10
16秒前
所所应助科研通管家采纳,获得10
16秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155593
求助须知:如何正确求助?哪些是违规求助? 2806820
关于积分的说明 7870825
捐赠科研通 2465126
什么是DOI,文献DOI怎么找? 1312144
科研通“疑难数据库(出版商)”最低求助积分说明 629889
版权声明 601892