Texture Features of Magnetic Resonance Images: an Early Marker of Post-stroke Cognitive Impairment

医学 磁共振成像 冲程(发动机) 海马体 神经组阅片室 神经学 内科学 神经心理学 相关性 功能磁共振成像 内嗅皮质 神经影像学 心脏病学 认知 放射科 精神科 机械工程 几何学 数学 工程类
作者
Nacim Betrouni,Moussaoui Yasmina,Stéphanie Bombois,Maud Pétrault,Thibaut Dondaine,Cédrick Lachaud,Charlotte Laloux,Anne‐Marie Mendyk,Hilde Hénon,Régis Bordet
出处
期刊:Translational Stroke Research [Springer Nature]
卷期号:11 (4): 643-652 被引量:33
标识
DOI:10.1007/s12975-019-00746-3
摘要

Stroke is frequently associated with delayed, long-term cognitive impairment (CI) and dementia. Recent research has focused on identifying early predictive markers of CI occurrence. We carried out a texture analysis of magnetic resonance (MR) images to identify predictive markers of CI occurrence based on a combination of preclinical and clinical data. Seventy-two-hour post-stroke T1W MR images of 160 consecutive patients were examined, including 75 patients with confirmed CI at the 6-month post-stroke neuropsychological examination. Texture features were measured in the hippocampus and entorhinal cortex and compared between patients with CI and those without. A correlation study determined their association with MoCA and MMSE clinical scores. Significant features were then combined with the classical prognostic factors, age and gender, to build a machine learning algorithm as a predictive model for CI occurrence. A middle cerebral artery transient occlusion model was used. Texture features were compared in the hippocampus of sham and lesioned rats and were correlated with histologically assessed neural loss. In clinical studies, two texture features, kurtosis and inverse difference moment, differed significantly between patients with and without CI and were significantly correlated with MoCA and MMSE scores. The prediction model had an accuracy of 88 ± 3%. The preclinical model revealed a significant correlation between texture features and neural density in the hippocampus contralateral to the ischemic area. These preliminary results suggest that texture features of MR images are representative of neural alteration and could be a part of a screening strategy for the early prediction of post-stroke CI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
Owen应助edtaa采纳,获得10
1秒前
万能图书馆应助orange采纳,获得10
2秒前
Yu完成签到,获得积分10
2秒前
221发布了新的文献求助10
3秒前
znn发布了新的文献求助10
3秒前
3秒前
maq完成签到,获得积分10
3秒前
刚国忠发布了新的文献求助10
3秒前
zzz完成签到,获得积分10
4秒前
霸气的忆丹完成签到,获得积分10
4秒前
韩麒嘉发布了新的文献求助10
4秒前
4秒前
4秒前
bingyv发布了新的文献求助10
5秒前
5秒前
反之完成签到,获得积分10
5秒前
小圆不圆完成签到,获得积分10
6秒前
ding5完成签到,获得积分10
6秒前
6秒前
6秒前
软语完成签到,获得积分10
6秒前
chuzai完成签到,获得积分10
7秒前
小二郎应助zhanng采纳,获得10
7秒前
7秒前
刘厚麟发布了新的文献求助20
8秒前
8秒前
Lucas应助一个小鸡腿采纳,获得10
8秒前
8秒前
英俊的铭应助AI_S采纳,获得10
8秒前
9秒前
9秒前
小俊发布了新的文献求助10
9秒前
bc应助Angel采纳,获得30
9秒前
杨好圆完成签到,获得积分10
9秒前
Xie完成签到,获得积分10
9秒前
Stone发布了新的文献求助10
9秒前
原野小年发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836