Texture Features of Magnetic Resonance Images: an Early Marker of Post-stroke Cognitive Impairment

医学 磁共振成像 冲程(发动机) 海马体 神经组阅片室 神经学 内科学 神经心理学 相关性 功能磁共振成像 内嗅皮质 神经影像学 心脏病学 认知 放射科 精神科 工程类 机械工程 数学 几何学
作者
Nacim Betrouni,Moussaoui Yasmina,Stéphanie Bombois,Maud Pétrault,Thibaut Dondaine,Cédrick Lachaud,Charlotte Laloux,Anne‐Marie Mendyk,Hilde Hénon,Régis Bordet
出处
期刊:Translational Stroke Research [Springer Science+Business Media]
卷期号:11 (4): 643-652 被引量:33
标识
DOI:10.1007/s12975-019-00746-3
摘要

Stroke is frequently associated with delayed, long-term cognitive impairment (CI) and dementia. Recent research has focused on identifying early predictive markers of CI occurrence. We carried out a texture analysis of magnetic resonance (MR) images to identify predictive markers of CI occurrence based on a combination of preclinical and clinical data. Seventy-two-hour post-stroke T1W MR images of 160 consecutive patients were examined, including 75 patients with confirmed CI at the 6-month post-stroke neuropsychological examination. Texture features were measured in the hippocampus and entorhinal cortex and compared between patients with CI and those without. A correlation study determined their association with MoCA and MMSE clinical scores. Significant features were then combined with the classical prognostic factors, age and gender, to build a machine learning algorithm as a predictive model for CI occurrence. A middle cerebral artery transient occlusion model was used. Texture features were compared in the hippocampus of sham and lesioned rats and were correlated with histologically assessed neural loss. In clinical studies, two texture features, kurtosis and inverse difference moment, differed significantly between patients with and without CI and were significantly correlated with MoCA and MMSE scores. The prediction model had an accuracy of 88 ± 3%. The preclinical model revealed a significant correlation between texture features and neural density in the hippocampus contralateral to the ischemic area. These preliminary results suggest that texture features of MR images are representative of neural alteration and could be a part of a screening strategy for the early prediction of post-stroke CI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星上秋尽完成签到,获得积分10
刚刚
刚刚
刚刚
太阳发布了新的文献求助10
刚刚
gggggggbao完成签到,获得积分10
1秒前
加贺发布了新的文献求助10
1秒前
2秒前
旷意发布了新的文献求助10
2秒前
Lexine发布了新的文献求助10
3秒前
3秒前
jeil完成签到,获得积分10
4秒前
鱼鱼子999发布了新的文献求助10
4秒前
AamirAli完成签到,获得积分10
5秒前
在水一方应助太阳采纳,获得10
5秒前
田様应助gggggggbao采纳,获得10
5秒前
6秒前
简单的鲜花完成签到,获得积分10
6秒前
科研通AI6应助lily采纳,获得10
6秒前
杨锐完成签到,获得积分10
7秒前
风趣从霜完成签到,获得积分10
7秒前
从容的完成签到 ,获得积分10
8秒前
9秒前
9秒前
ssy发布了新的文献求助10
9秒前
感动城完成签到,获得积分10
10秒前
儒雅的小懒虫完成签到 ,获得积分10
12秒前
mika910完成签到 ,获得积分10
12秒前
12秒前
13秒前
ybouo完成签到,获得积分10
14秒前
122456完成签到,获得积分10
14秒前
华国锋应助加贺采纳,获得20
15秒前
Jave发布了新的文献求助10
15秒前
ssy完成签到,获得积分10
16秒前
小蘑菇应助Tao采纳,获得10
16秒前
田様应助可靠雪雪采纳,获得10
18秒前
领导范儿应助嘻嘻采纳,获得10
19秒前
19秒前
麦芽糖完成签到,获得积分10
19秒前
orixero应助朴素的士晋采纳,获得10
19秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131875
求助须知:如何正确求助?哪些是违规求助? 4333485
关于积分的说明 13500924
捐赠科研通 4170518
什么是DOI,文献DOI怎么找? 2286388
邀请新用户注册赠送积分活动 1287217
关于科研通互助平台的介绍 1228262