Texture Features of Magnetic Resonance Images: an Early Marker of Post-stroke Cognitive Impairment

医学 磁共振成像 冲程(发动机) 海马体 神经组阅片室 神经学 内科学 神经心理学 相关性 功能磁共振成像 内嗅皮质 神经影像学 心脏病学 认知 放射科 精神科 工程类 机械工程 数学 几何学
作者
Nacim Betrouni,Moussaoui Yasmina,Stéphanie Bombois,Maud Pétrault,Thibaut Dondaine,Cédrick Lachaud,Charlotte Laloux,Anne‐Marie Mendyk,Hilde Hénon,Régis Bordet
出处
期刊:Translational Stroke Research [Springer Science+Business Media]
卷期号:11 (4): 643-652 被引量:33
标识
DOI:10.1007/s12975-019-00746-3
摘要

Stroke is frequently associated with delayed, long-term cognitive impairment (CI) and dementia. Recent research has focused on identifying early predictive markers of CI occurrence. We carried out a texture analysis of magnetic resonance (MR) images to identify predictive markers of CI occurrence based on a combination of preclinical and clinical data. Seventy-two-hour post-stroke T1W MR images of 160 consecutive patients were examined, including 75 patients with confirmed CI at the 6-month post-stroke neuropsychological examination. Texture features were measured in the hippocampus and entorhinal cortex and compared between patients with CI and those without. A correlation study determined their association with MoCA and MMSE clinical scores. Significant features were then combined with the classical prognostic factors, age and gender, to build a machine learning algorithm as a predictive model for CI occurrence. A middle cerebral artery transient occlusion model was used. Texture features were compared in the hippocampus of sham and lesioned rats and were correlated with histologically assessed neural loss. In clinical studies, two texture features, kurtosis and inverse difference moment, differed significantly between patients with and without CI and were significantly correlated with MoCA and MMSE scores. The prediction model had an accuracy of 88 ± 3%. The preclinical model revealed a significant correlation between texture features and neural density in the hippocampus contralateral to the ischemic area. These preliminary results suggest that texture features of MR images are representative of neural alteration and could be a part of a screening strategy for the early prediction of post-stroke CI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小于要毕业完成签到 ,获得积分10
3秒前
zbr完成签到 ,获得积分10
4秒前
袁十三发布了新的文献求助30
5秒前
6秒前
6秒前
8秒前
Rui_Rui应助活力的紫菜采纳,获得10
8秒前
10秒前
月亮不知道完成签到,获得积分10
10秒前
pijiu发布了新的文献求助10
10秒前
jiminfu完成签到,获得积分10
12秒前
斯文败类应助微醺采纳,获得10
12秒前
小翼完成签到,获得积分10
13秒前
wangayting发布了新的文献求助30
13秒前
原味鸡发布了新的文献求助10
13秒前
15秒前
15秒前
隐形曼青应助合适熊猫采纳,获得10
16秒前
我爱学习完成签到 ,获得积分10
18秒前
郭科研完成签到,获得积分10
18秒前
666完成签到,获得积分10
19秒前
meng发布了新的文献求助10
20秒前
CipherSage应助自一采纳,获得10
20秒前
小马甲应助tulips采纳,获得10
21秒前
康康发布了新的文献求助10
21秒前
一点完成签到 ,获得积分10
22秒前
22秒前
zhenghua完成签到,获得积分10
23秒前
袁十三完成签到,获得积分10
26秒前
memedaaaah完成签到,获得积分10
26秒前
李健应助自觉的小凝采纳,获得10
26秒前
www完成签到,获得积分10
28秒前
pijiu完成签到,获得积分10
28秒前
微醺发布了新的文献求助10
29秒前
在水一方应助meng采纳,获得10
29秒前
浮游应助吕培森采纳,获得10
30秒前
香锅不要辣完成签到 ,获得积分10
31秒前
满家归寻完成签到 ,获得积分10
31秒前
司马云发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5296872
求助须知:如何正确求助?哪些是违规求助? 4445936
关于积分的说明 13837692
捐赠科研通 4330953
什么是DOI,文献DOI怎么找? 2377367
邀请新用户注册赠送积分活动 1372651
关于科研通互助平台的介绍 1338148