Texture Features of Magnetic Resonance Images: an Early Marker of Post-stroke Cognitive Impairment

医学 磁共振成像 冲程(发动机) 海马体 神经组阅片室 神经学 内科学 神经心理学 相关性 功能磁共振成像 内嗅皮质 神经影像学 心脏病学 认知 放射科 精神科 机械工程 几何学 数学 工程类
作者
Nacim Betrouni,Moussaoui Yasmina,Stéphanie Bombois,Maud Pétrault,Thibaut Dondaine,Cédrick Lachaud,Charlotte Laloux,Anne‐Marie Mendyk,Hilde Hénon,Régis Bordet
出处
期刊:Translational Stroke Research [Springer Nature]
卷期号:11 (4): 643-652 被引量:32
标识
DOI:10.1007/s12975-019-00746-3
摘要

Stroke is frequently associated with delayed, long-term cognitive impairment (CI) and dementia. Recent research has focused on identifying early predictive markers of CI occurrence. We carried out a texture analysis of magnetic resonance (MR) images to identify predictive markers of CI occurrence based on a combination of preclinical and clinical data. Seventy-two-hour post-stroke T1W MR images of 160 consecutive patients were examined, including 75 patients with confirmed CI at the 6-month post-stroke neuropsychological examination. Texture features were measured in the hippocampus and entorhinal cortex and compared between patients with CI and those without. A correlation study determined their association with MoCA and MMSE clinical scores. Significant features were then combined with the classical prognostic factors, age and gender, to build a machine learning algorithm as a predictive model for CI occurrence. A middle cerebral artery transient occlusion model was used. Texture features were compared in the hippocampus of sham and lesioned rats and were correlated with histologically assessed neural loss. In clinical studies, two texture features, kurtosis and inverse difference moment, differed significantly between patients with and without CI and were significantly correlated with MoCA and MMSE scores. The prediction model had an accuracy of 88 ± 3%. The preclinical model revealed a significant correlation between texture features and neural density in the hippocampus contralateral to the ischemic area. These preliminary results suggest that texture features of MR images are representative of neural alteration and could be a part of a screening strategy for the early prediction of post-stroke CI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
书源完成签到,获得积分10
1秒前
不三不四发布了新的文献求助10
1秒前
zyyyyyy发布了新的文献求助10
2秒前
2秒前
网络药理学完成签到,获得积分10
2秒前
Kristine完成签到 ,获得积分10
3秒前
闷闷坊完成签到 ,获得积分10
3秒前
阳佟水蓉完成签到,获得积分10
3秒前
我爱华姐烤翅完成签到,获得积分10
3秒前
凝云发布了新的文献求助50
4秒前
科研钓鱼佬完成签到,获得积分10
4秒前
5秒前
宿素完成签到,获得积分10
5秒前
MM完成签到,获得积分10
5秒前
一棵草发布了新的文献求助10
5秒前
JamesPei应助糊涂的沛山采纳,获得10
6秒前
自由的中蓝完成签到 ,获得积分10
6秒前
勤恳幻梦关注了科研通微信公众号
7秒前
多托郭完成签到 ,获得积分10
7秒前
欢呼妙菱完成签到,获得积分10
7秒前
111完成签到 ,获得积分10
7秒前
孙悟空大巨人完成签到,获得积分10
8秒前
vic完成签到,获得积分10
8秒前
dingbeicn完成签到,获得积分10
8秒前
陈思完成签到,获得积分10
8秒前
传奇3应助k2k2k采纳,获得10
9秒前
领导范儿应助pengnanhao采纳,获得10
9秒前
不争气的棺材板完成签到,获得积分10
9秒前
土木搬砖法律完成签到,获得积分10
9秒前
何浏亮完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
lmgegege发布了新的文献求助10
10秒前
许你晚风凉完成签到,获得积分10
11秒前
11秒前
兔斯基完成签到,获得积分10
11秒前
Owen应助阳地黄采纳,获得80
12秒前
CodeCraft应助顺利的绿柏采纳,获得10
12秒前
啊哈完成签到 ,获得积分10
12秒前
高分求助中
Evolution 10000
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
Die Gottesanbeterin: Mantis religiosa: 656 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158796
求助须知:如何正确求助?哪些是违规求助? 2810007
关于积分的说明 7885064
捐赠科研通 2468748
什么是DOI,文献DOI怎么找? 1314374
科研通“疑难数据库(出版商)”最低求助积分说明 630601
版权声明 602012