Development and optimization of artificial neural network algorithms for the prediction of building specific local temperature for HVAC control

暖通空调 人工神经网络 均方误差 控制器(灌溉) 工程类 空调 汽车工程 计算机科学 模拟 算法 实时计算 机器学习 机械工程 统计 生物 数学 农学
作者
Gulsun Demirezen,Alan S. Fung,Mathieu Deprez
出处
期刊:International Journal of Energy Research [Wiley]
卷期号:44 (11): 8513-8531 被引量:37
标识
DOI:10.1002/er.5537
摘要

This research accounts for the outcome of a major cloud-based smart dual fuel switching system (SDFSS) project, which is a dual-fuel integrated hybrid heating, ventilation, and air conditioning (HVAC) system in residential homes. The SDFSS was developed to enable optimized, flexible, and cost-effective switching between the natural gas furnace and electric air source heat pump (ASHP). In order to meet the optimal energy consumption requirements in the house and provide thermal comfort for the residents, various high-quality sensors and meters were installed to record multiple data points inside and outside the house. The performance of the system was monitored in the long term, which is a common practice in energy monitoring projects. Outdoor temperature data plays the most crucial role in operating HVAC systems and also is a key variable in the decision-making algorithm of the SDFSS controller. Therefore, this study introduces an innovative and unique approach to obtain the outdoor temperature that could potentially replace high precision sensors with a data-driven model utilizing weather station data at a time resolution of 2 minutes and 1 hour. In this work, a series of artificial neural network algorithms were developed, optimized, and implemented to predict the outdoor temperature with an average of 0.99 coefficient of correlation (R), 1.011 mean absolute error (MAE), and 1.315 root mean square error (RMSE). It has been demonstrated that the developed ANN is a reliable and powerful tool in predicting outdoor temperature. Thus, the proposed model is strongly suggested to be implemented as an alternative to temperature sensors in hybrid energy systems or similar systems requiring accurate ambient temperature measurements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
sandyhaikeyi完成签到,获得积分10
刚刚
机智雁凡完成签到,获得积分10
1秒前
dengy完成签到,获得积分10
1秒前
七兮完成签到,获得积分10
1秒前
2秒前
3秒前
科研小白完成签到,获得积分10
4秒前
rksm完成签到 ,获得积分10
4秒前
4秒前
Lucas应助聪慧芷巧采纳,获得10
4秒前
4秒前
呼呼完成签到,获得积分10
4秒前
义气的咖啡豆完成签到,获得积分10
4秒前
洞悉完成签到,获得积分10
5秒前
5秒前
脑洞疼应助超帅的鹏飞采纳,获得10
6秒前
马夋完成签到,获得积分10
6秒前
Ashley完成签到,获得积分20
6秒前
大强完成签到,获得积分10
6秒前
海绵饱饱完成签到,获得积分10
6秒前
Serenity发布了新的文献求助10
6秒前
peterhuai发布了新的文献求助10
7秒前
wtzhang16完成签到 ,获得积分10
7秒前
天天天才完成签到,获得积分10
7秒前
A0完成签到,获得积分10
7秒前
山雀发布了新的文献求助10
7秒前
ZTLlele完成签到 ,获得积分10
8秒前
8秒前
郭凯丽发布了新的文献求助10
8秒前
ikear发布了新的文献求助30
9秒前
10秒前
春天的粥完成签到 ,获得积分10
10秒前
10秒前
wanci应助leah96采纳,获得10
10秒前
10秒前
小周发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015970
求助须知:如何正确求助?哪些是违规求助? 3555964
关于积分的说明 11319479
捐赠科研通 3289040
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812044