Development and optimization of artificial neural network algorithms for the prediction of building specific local temperature for HVAC control

暖通空调 人工神经网络 均方误差 控制器(灌溉) 工程类 空调 汽车工程 计算机科学 模拟 算法 实时计算 机器学习 机械工程 统计 生物 数学 农学
作者
Gulsun Demirezen,Alan S. Fung,Mathieu Deprez
出处
期刊:International Journal of Energy Research [Wiley]
卷期号:44 (11): 8513-8531 被引量:37
标识
DOI:10.1002/er.5537
摘要

This research accounts for the outcome of a major cloud-based smart dual fuel switching system (SDFSS) project, which is a dual-fuel integrated hybrid heating, ventilation, and air conditioning (HVAC) system in residential homes. The SDFSS was developed to enable optimized, flexible, and cost-effective switching between the natural gas furnace and electric air source heat pump (ASHP). In order to meet the optimal energy consumption requirements in the house and provide thermal comfort for the residents, various high-quality sensors and meters were installed to record multiple data points inside and outside the house. The performance of the system was monitored in the long term, which is a common practice in energy monitoring projects. Outdoor temperature data plays the most crucial role in operating HVAC systems and also is a key variable in the decision-making algorithm of the SDFSS controller. Therefore, this study introduces an innovative and unique approach to obtain the outdoor temperature that could potentially replace high precision sensors with a data-driven model utilizing weather station data at a time resolution of 2 minutes and 1 hour. In this work, a series of artificial neural network algorithms were developed, optimized, and implemented to predict the outdoor temperature with an average of 0.99 coefficient of correlation (R), 1.011 mean absolute error (MAE), and 1.315 root mean square error (RMSE). It has been demonstrated that the developed ANN is a reliable and powerful tool in predicting outdoor temperature. Thus, the proposed model is strongly suggested to be implemented as an alternative to temperature sensors in hybrid energy systems or similar systems requiring accurate ambient temperature measurements.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小孙发布了新的文献求助10
2秒前
狂野萤完成签到,获得积分10
2秒前
BB完成签到,获得积分10
4秒前
烟花应助xiaojingling采纳,获得30
5秒前
6秒前
徐裘完成签到,获得积分10
6秒前
Miss_Q完成签到,获得积分20
8秒前
8秒前
9秒前
9秒前
PP完成签到,获得积分10
10秒前
10秒前
narall发布了新的文献求助10
11秒前
12秒前
张柏柳发布了新的文献求助10
12秒前
一鸣发布了新的文献求助10
12秒前
易达发布了新的文献求助10
13秒前
累啊发布了新的文献求助10
14秒前
希望天下0贩的0应助jun采纳,获得10
18秒前
千纸鹤完成签到,获得积分20
19秒前
让我康康完成签到,获得积分20
20秒前
20秒前
科烟生完成签到,获得积分10
20秒前
仙茅应助努力努力再努力采纳,获得30
22秒前
centlay发布了新的文献求助10
24秒前
25秒前
25秒前
27秒前
稍远发布了新的文献求助10
31秒前
标致的傲之完成签到,获得积分10
31秒前
32秒前
32秒前
王九八发布了新的文献求助10
33秒前
Jasper应助小孙采纳,获得10
33秒前
34秒前
PoohPooh发布了新的文献求助10
37秒前
稍远完成签到,获得积分10
38秒前
迷雾完成签到,获得积分10
38秒前
39秒前
yolo发布了新的文献求助10
39秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3256323
求助须知:如何正确求助?哪些是违规求助? 2898596
关于积分的说明 8301615
捐赠科研通 2567759
什么是DOI,文献DOI怎么找? 1394681
科研通“疑难数据库(出版商)”最低求助积分说明 652913
邀请新用户注册赠送积分活动 630557