Design of Adaptive Controller Exploiting Learning Concepts Applied to a BLDC-Based Drive System

控制器(灌溉) 计算机科学 控制工程 控制理论(社会学) 代表(政治) 弹道 自适应控制 迭代学习控制 架空(工程) 人工智能 控制(管理) 工程类 操作系统 政治 物理 生物 法学 政治学 农学 天文
作者
Pierpaolo Dini,Sergio Saponara
出处
期刊:Energies [MDPI AG]
卷期号:13 (10): 2512-2512 被引量:23
标识
DOI:10.3390/en13102512
摘要

This work presents an innovative control architecture, which takes its ideas from the theory of adaptive control techniques and the theory of statistical learning at the same time. Taking inspiration from the architecture of a classical neural network with several hidden levels, the principle is to divide the architecture of the adaptive controller into three different levels. Each level implements an algorithm based on learning from data and therefore we can talk about learning concepts. Each level has a different task: the first to learn the required reference to the control loop; the second to learn the coefficients of the state representation of a model of the system to be controlled; and finally, the third to learn the coefficients of the state representation of the actual controller. The design of the control system is reported from both a rigorous and an operational point of view. As an application example, the proposed control technique is applied on a second-order non-linear system. We consider a servo-drive based on a brushless DC (BLDC) motor, whose dynamic model considers all the non-linear effects related to the electromechanical nature of the electric machine itself, and also an accurate model of the switching power converter. The reported example shows the capability of the control algorithm to ensure trajectory tracking while allowing for disturbance rejection with different disturbance signal amplitude. The implementation complexity analysis of the new controller is also proposed, showing its low overhead vs. basic control solutions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
2秒前
橙子发布了新的文献求助10
3秒前
3秒前
3秒前
隐形曼青应助zou采纳,获得30
3秒前
杨利英完成签到,获得积分10
4秒前
5秒前
7秒前
8秒前
8秒前
8秒前
9秒前
10秒前
无极微光应助朴实的草丛采纳,获得20
10秒前
lpy发布了新的文献求助10
10秒前
竹斟酒完成签到,获得积分10
11秒前
干净傲霜发布了新的文献求助10
13秒前
duo111发布了新的文献求助10
14秒前
8888拉发布了新的文献求助10
14秒前
精明怜南发布了新的文献求助10
14秒前
15秒前
Chuwei发布了新的文献求助10
16秒前
Amyel完成签到,获得积分10
17秒前
外向宝川发布了新的文献求助10
17秒前
Yu发布了新的文献求助10
17秒前
肥羊完成签到,获得积分10
19秒前
21秒前
阳光诗珊发布了新的文献求助10
21秒前
22秒前
传奇3应助赵永刚采纳,获得10
23秒前
量子星尘发布了新的文献求助10
24秒前
雨姐科研应助酷酷的小钟采纳,获得10
24秒前
共享精神应助lijiuyi采纳,获得10
24秒前
25秒前
Owen应助Wang采纳,获得10
25秒前
糟糕的翠完成签到,获得积分10
25秒前
26秒前
小研不咸完成签到,获得积分10
27秒前
zou发布了新的文献求助30
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5533429
求助须知:如何正确求助?哪些是违规求助? 4621675
关于积分的说明 14579891
捐赠科研通 4561782
什么是DOI,文献DOI怎么找? 2499586
邀请新用户注册赠送积分活动 1479344
关于科研通互助平台的介绍 1450522