Design of Adaptive Controller Exploiting Learning Concepts Applied to a BLDC-Based Drive System

控制器(灌溉) 计算机科学 控制工程 控制理论(社会学) 代表(政治) 弹道 自适应控制 迭代学习控制 架空(工程) 人工智能 控制(管理) 工程类 操作系统 政治 物理 生物 法学 政治学 农学 天文
作者
Pierpaolo Dini,Sergio Saponara
出处
期刊:Energies [MDPI AG]
卷期号:13 (10): 2512-2512 被引量:23
标识
DOI:10.3390/en13102512
摘要

This work presents an innovative control architecture, which takes its ideas from the theory of adaptive control techniques and the theory of statistical learning at the same time. Taking inspiration from the architecture of a classical neural network with several hidden levels, the principle is to divide the architecture of the adaptive controller into three different levels. Each level implements an algorithm based on learning from data and therefore we can talk about learning concepts. Each level has a different task: the first to learn the required reference to the control loop; the second to learn the coefficients of the state representation of a model of the system to be controlled; and finally, the third to learn the coefficients of the state representation of the actual controller. The design of the control system is reported from both a rigorous and an operational point of view. As an application example, the proposed control technique is applied on a second-order non-linear system. We consider a servo-drive based on a brushless DC (BLDC) motor, whose dynamic model considers all the non-linear effects related to the electromechanical nature of the electric machine itself, and also an accurate model of the switching power converter. The reported example shows the capability of the control algorithm to ensure trajectory tracking while allowing for disturbance rejection with different disturbance signal amplitude. The implementation complexity analysis of the new controller is also proposed, showing its low overhead vs. basic control solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
义气谷兰完成签到,获得积分10
刚刚
姜姜完成签到,获得积分10
1秒前
小兵发布了新的文献求助10
2秒前
852应助王肖采纳,获得10
2秒前
3秒前
3秒前
木子完成签到,获得积分20
4秒前
5秒前
zino完成签到,获得积分10
5秒前
6秒前
6秒前
科研通AI2S应助feather采纳,获得10
7秒前
鹏程发布了新的文献求助10
8秒前
墨染书香完成签到,获得积分10
8秒前
lili关注了科研通微信公众号
8秒前
zzk发布了新的文献求助10
8秒前
arabidopsis应助lh采纳,获得10
9秒前
sharon发布了新的文献求助10
9秒前
喜悦的秋烟完成签到,获得积分10
11秒前
11秒前
康康123完成签到,获得积分20
12秒前
咖可乐发布了新的文献求助30
14秒前
14秒前
kk应助hfhkjh采纳,获得20
16秒前
17秒前
Yanan_Z发布了新的文献求助30
17秒前
17秒前
乐乐应助干净初彤采纳,获得10
18秒前
18秒前
十七应助鬼才之眼采纳,获得10
18秒前
19秒前
smiler488完成签到,获得积分10
20秒前
Hello应助让大佐眯会吧采纳,获得10
21秒前
meimei发布了新的文献求助10
22秒前
zhyzzz发布了新的文献求助10
23秒前
smiler488发布了新的文献求助10
23秒前
24秒前
wzq发布了新的文献求助10
24秒前
Cyber_relic完成签到,获得积分10
24秒前
25秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483245
求助须知:如何正确求助?哪些是违规求助? 3072633
关于积分的说明 9127379
捐赠科研通 2764270
什么是DOI,文献DOI怎么找? 1517034
邀请新用户注册赠送积分活动 701873
科研通“疑难数据库(出版商)”最低求助积分说明 700770