Design of Adaptive Controller Exploiting Learning Concepts Applied to a BLDC-Based Drive System

控制器(灌溉) 计算机科学 控制工程 控制理论(社会学) 代表(政治) 弹道 自适应控制 迭代学习控制 架空(工程) 人工智能 控制(管理) 工程类 操作系统 政治 物理 生物 法学 政治学 农学 天文
作者
Pierpaolo Dini,Sergio Saponara
出处
期刊:Energies [Multidisciplinary Digital Publishing Institute]
卷期号:13 (10): 2512-2512 被引量:23
标识
DOI:10.3390/en13102512
摘要

This work presents an innovative control architecture, which takes its ideas from the theory of adaptive control techniques and the theory of statistical learning at the same time. Taking inspiration from the architecture of a classical neural network with several hidden levels, the principle is to divide the architecture of the adaptive controller into three different levels. Each level implements an algorithm based on learning from data and therefore we can talk about learning concepts. Each level has a different task: the first to learn the required reference to the control loop; the second to learn the coefficients of the state representation of a model of the system to be controlled; and finally, the third to learn the coefficients of the state representation of the actual controller. The design of the control system is reported from both a rigorous and an operational point of view. As an application example, the proposed control technique is applied on a second-order non-linear system. We consider a servo-drive based on a brushless DC (BLDC) motor, whose dynamic model considers all the non-linear effects related to the electromechanical nature of the electric machine itself, and also an accurate model of the switching power converter. The reported example shows the capability of the control algorithm to ensure trajectory tracking while allowing for disturbance rejection with different disturbance signal amplitude. The implementation complexity analysis of the new controller is also proposed, showing its low overhead vs. basic control solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
caicai发布了新的文献求助20
1秒前
陈花蕾完成签到 ,获得积分10
1秒前
2秒前
打打应助罗蒙洛索夫采纳,获得10
2秒前
司书存发布了新的文献求助10
3秒前
qiang完成签到,获得积分10
5秒前
李li关注了科研通微信公众号
6秒前
8秒前
66发布了新的文献求助10
8秒前
黄启烽发布了新的文献求助20
8秒前
阿九完成签到,获得积分10
10秒前
11秒前
MoriZhang发布了新的文献求助10
13秒前
Lz发布了新的文献求助10
16秒前
风清扬应助尚尚下下采纳,获得10
16秒前
大林小隐发布了新的文献求助30
16秒前
17秒前
19秒前
可爱的函函应助ss25采纳,获得30
19秒前
19秒前
En应助可靠的南露采纳,获得10
20秒前
20秒前
谢耳朵发布了新的文献求助20
21秒前
maxiaochen完成签到,获得积分10
21秒前
22秒前
Hello应助张利双采纳,获得30
22秒前
23秒前
23秒前
科研通AI2S应助李麟采纳,获得10
23秒前
思源应助李麟采纳,获得10
23秒前
文欣完成签到,获得积分20
24秒前
yangxs1995发布了新的文献求助10
24秒前
MoriZhang完成签到,获得积分10
25秒前
星燃发布了新的文献求助10
25秒前
Lz完成签到,获得积分10
26秒前
大林小隐完成签到,获得积分10
28秒前
30秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962822
求助须知:如何正确求助?哪些是违规求助? 3508736
关于积分的说明 11142697
捐赠科研通 3241520
什么是DOI,文献DOI怎么找? 1791604
邀请新用户注册赠送积分活动 872987
科研通“疑难数据库(出版商)”最低求助积分说明 803517