Among recent lung imaging techniques and devices, electrical impedance tomography (EIT) can provide dynamic information on the distribution regional lung ventilation. EIT images possess a high temporal and functional resolution allowing the visualization of dynamic physiological and pathological changes on a breath-by-breath basis. EIT detects changes in electric impedance (i.e., changes in gas/fluid ratio) and describes them in real time, both visually through images and waveforms, and numerically, allowing the clinician to monitor disease evolution and response to treatment. The use of EIT in clinical practice is supported by several studies demonstrating a good correlation between impedance tomography data and other validated methods of measuring lung volume. In this review, we will provide an overview on the rationale, basic functioning and most common applications of EIT in the management of mechanically ventilated patients.