A stacking-based ensemble learning method for earthquake casualty prediction

计算机科学 集成学习 堆积 钥匙(锁) 机器学习 人工智能 群体智能 特征(语言学) 群体行为 基础(拓扑) 数据挖掘 粒子群优化 计算机安全 数学 核磁共振 语言学 物理 数学分析 哲学
作者
Shaoze Cui,Yunqiang Yin,Dujuan Wang,Zhiwu Li,Yanzhang Wang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:101: 107038-107038 被引量:156
标识
DOI:10.1016/j.asoc.2020.107038
摘要

The estimation of the loss and prediction of the casualties in earthquake-stricken areas are vital for making rapid and accurate decisions during rescue efforts. The number of casualties is determined by various factors, necessitating a comprehensive system for earthquake-casualty prediction. To obtain accurate prediction results, an effective prediction method based on stacking ensemble learning and improved swarm intelligence algorithm is proposed in this study, which comprises three parts: (1) applying multiple base learners for training, (2) using a stacking strategy to integrate the results generated by multiple base learners to obtain the final prediction results, and (3) developing an improved swarm intelligence algorithm to optimize the key parameters in the prediction model. To verify the effectiveness of the model, we collected data pertaining to earthquake destruction from 1966 to 2017 in China. Experiments were conducted to compare the proposed method with popular machine learning methods. It was found that the stacking ensemble learning method can effectively integrate the prediction results of the base learner to improve the performance of the model, and the improved swarm intelligence algorithm can further improve the prediction accuracy. Moreover, the importance of each feature was evaluated, which has important implications for future work such as casualty prevention and rescue during earthquakes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助敏感的盼夏采纳,获得10
刚刚
冷静谷芹完成签到,获得积分20
1秒前
m13965062353完成签到,获得积分10
3秒前
3秒前
zz完成签到,获得积分10
3秒前
小马甲应助时若采纳,获得10
4秒前
英姑应助niuniu999采纳,获得10
5秒前
PANSIXUAN完成签到,获得积分10
6秒前
6秒前
Hello应助欣喜石头采纳,获得10
8秒前
爆米花应助YY采纳,获得10
9秒前
有点怪完成签到 ,获得积分10
9秒前
竹焚完成签到 ,获得积分10
11秒前
zz发布了新的文献求助10
12秒前
斯文败类应助斑其采纳,获得10
13秒前
14秒前
ttracc完成签到 ,获得积分10
16秒前
Akim应助西卡采纳,获得10
16秒前
迪迦奥特曼完成签到,获得积分10
18秒前
18秒前
18秒前
19秒前
21秒前
21秒前
孙笑川发布了新的文献求助10
22秒前
撒西不理完成签到,获得积分10
24秒前
内向的月饼完成签到,获得积分10
25秒前
加油呀发布了新的文献求助30
26秒前
xh发布了新的文献求助10
26秒前
27秒前
28秒前
女青发布了新的文献求助10
28秒前
woollen2022发布了新的文献求助20
28秒前
明理的晓绿完成签到,获得积分10
29秒前
32秒前
33秒前
李思超完成签到,获得积分20
34秒前
35秒前
斑其发布了新的文献求助10
37秒前
苗苗发布了新的文献求助10
38秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222475
求助须知:如何正确求助?哪些是违规求助? 2871136
关于积分的说明 8173991
捐赠科研通 2538057
什么是DOI,文献DOI怎么找? 1370279
科研通“疑难数据库(出版商)”最低求助积分说明 645753
邀请新用户注册赠送积分活动 619548