Concurrent Prediction of Finger Forces Based on Source Separation and Classification of Neuron Discharge Information

解码方法 计算机科学 等长运动 神经解码 接口(物质) 脑-机接口 人工智能 语音识别 手势 模式识别(心理学) 算法 脑电图 神经科学 心理学 医学 气泡 最大气泡压力法 并行计算 物理疗法
作者
Zheng Yang,Xiaogang Hu
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:31 (06): 2150010-2150010 被引量:17
标识
DOI:10.1142/s0129065721500106
摘要

A reliable neural-machine interface is essential for humans to intuitively interact with advanced robotic hands in an unconstrained environment. Existing neural decoding approaches utilize either discrete hand gesture-based pattern recognition or continuous force decoding with one finger at a time. We developed a neural decoding technique that allowed continuous and concurrent prediction of forces of different fingers based on spinal motoneuron firing information. High-density skin-surface electromyogram (HD-EMG) signals of finger extensor muscle were recorded, while human participants produced isometric flexion forces in a dexterous manner (i.e. produced varying forces using either a single finger or multiple fingers concurrently). Motoneuron firing information was extracted from the EMG signals using a blind source separation technique, and each identified neuron was further classified to be associated with a given finger. The forces of individual fingers were then predicted concurrently by utilizing the corresponding motoneuron pool firing frequency of individual fingers. Compared with conventional approaches, our technique led to better prediction performances, i.e. a higher correlation ([Formula: see text] versus [Formula: see text]), a lower prediction error ([Formula: see text]% MVC versus [Formula: see text]% MVC), and a higher accuracy in finger state (rest/active) prediction ([Formula: see text]% versus [Formula: see text]%). Our decoding method demonstrated the possibility of classifying motoneurons for different fingers, which significantly alleviated the cross-talk issue of EMG recordings from neighboring hand muscles, and allowed the decoding of finger forces individually and concurrently. The outcomes offered a robust neural-machine interface that could allow users to intuitively control robotic hands in a dexterous manner.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
笨笨的元风完成签到 ,获得积分10
2秒前
土豆完成签到,获得积分10
2秒前
zengliangke发布了新的文献求助20
2秒前
yct91092发布了新的文献求助10
3秒前
mcw完成签到 ,获得积分10
3秒前
今后应助liuzhanyu采纳,获得10
3秒前
发一区发布了新的文献求助10
3秒前
4秒前
整齐听南完成签到 ,获得积分10
4秒前
lt完成签到,获得积分10
4秒前
shishi0718完成签到,获得积分10
4秒前
周先森完成签到,获得积分10
5秒前
5秒前
小可爱完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
大树应助一点就通采纳,获得10
5秒前
wtfff发布了新的文献求助10
5秒前
科研通AI6应助Ayn采纳,获得10
5秒前
Dr.zhong完成签到,获得积分10
5秒前
杨乐多完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
QWE发布了新的文献求助10
8秒前
Hao完成签到,获得积分10
8秒前
学术小白菜完成签到,获得积分20
8秒前
8秒前
9秒前
萌萌哒瓢酱完成签到,获得积分10
9秒前
小白完成签到 ,获得积分10
10秒前
赘婿应助白菜也挺贵采纳,获得10
10秒前
cherry发布了新的文献求助10
10秒前
田di完成签到 ,获得积分10
10秒前
团子呀发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652526
求助须知:如何正确求助?哪些是违规求助? 4787640
关于积分的说明 15060403
捐赠科研通 4811049
什么是DOI,文献DOI怎么找? 2573602
邀请新用户注册赠送积分活动 1529411
关于科研通互助平台的介绍 1488273