亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Concurrent Prediction of Finger Forces Based on Source Separation and Classification of Neuron Discharge Information

解码方法 计算机科学 等长运动 神经解码 接口(物质) 脑-机接口 人工智能 语音识别 手势 模式识别(心理学) 算法 脑电图 神经科学 心理学 医学 气泡 最大气泡压力法 并行计算 物理疗法
作者
Zheng Yang,Xiaogang Hu
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:31 (06): 2150010-2150010 被引量:17
标识
DOI:10.1142/s0129065721500106
摘要

A reliable neural-machine interface is essential for humans to intuitively interact with advanced robotic hands in an unconstrained environment. Existing neural decoding approaches utilize either discrete hand gesture-based pattern recognition or continuous force decoding with one finger at a time. We developed a neural decoding technique that allowed continuous and concurrent prediction of forces of different fingers based on spinal motoneuron firing information. High-density skin-surface electromyogram (HD-EMG) signals of finger extensor muscle were recorded, while human participants produced isometric flexion forces in a dexterous manner (i.e. produced varying forces using either a single finger or multiple fingers concurrently). Motoneuron firing information was extracted from the EMG signals using a blind source separation technique, and each identified neuron was further classified to be associated with a given finger. The forces of individual fingers were then predicted concurrently by utilizing the corresponding motoneuron pool firing frequency of individual fingers. Compared with conventional approaches, our technique led to better prediction performances, i.e. a higher correlation ([Formula: see text] versus [Formula: see text]), a lower prediction error ([Formula: see text]% MVC versus [Formula: see text]% MVC), and a higher accuracy in finger state (rest/active) prediction ([Formula: see text]% versus [Formula: see text]%). Our decoding method demonstrated the possibility of classifying motoneurons for different fingers, which significantly alleviated the cross-talk issue of EMG recordings from neighboring hand muscles, and allowed the decoding of finger forces individually and concurrently. The outcomes offered a robust neural-machine interface that could allow users to intuitively control robotic hands in a dexterous manner.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微S发布了新的文献求助10
2秒前
26秒前
27秒前
林狗发布了新的文献求助10
31秒前
闻巷雨完成签到 ,获得积分10
38秒前
Buyu0713完成签到,获得积分10
42秒前
shier完成签到 ,获得积分10
43秒前
clei完成签到 ,获得积分10
52秒前
52秒前
56秒前
Cmqq发布了新的文献求助10
57秒前
宝贝丫头完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
12完成签到,获得积分10
1分钟前
Zrrr完成签到 ,获得积分10
1分钟前
雨灵完成签到,获得积分10
1分钟前
1分钟前
研友_Zlepz8完成签到,获得积分0
1分钟前
雨灵发布了新的文献求助10
1分钟前
小马甲应助研友_Zlepz8采纳,获得10
1分钟前
1分钟前
mellow完成签到,获得积分10
1分钟前
文静人达发布了新的文献求助10
1分钟前
1分钟前
aliu发布了新的文献求助30
1分钟前
1分钟前
研友_Zlepz8发布了新的文献求助10
1分钟前
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
大国完成签到,获得积分20
1分钟前
司空晓山发布了新的文献求助20
1分钟前
C_关闭了C_文献求助
2分钟前
曹兆发布了新的文献求助100
2分钟前
失眠呆呆鱼完成签到 ,获得积分10
2分钟前
kluberos完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599706
求助须知:如何正确求助?哪些是违规求助? 4685410
关于积分的说明 14838480
捐赠科研通 4670043
什么是DOI,文献DOI怎么找? 2538158
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470898