Concurrent Prediction of Finger Forces Based on Source Separation and Classification of Neuron Discharge Information

解码方法 计算机科学 等长运动 神经解码 接口(物质) 脑-机接口 人工智能 语音识别 手势 模式识别(心理学) 算法 脑电图 神经科学 心理学 最大气泡压力法 医学 气泡 并行计算 物理疗法
作者
Zheng Yang,Xiaogang Hu
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:31 (06): 2150010-2150010 被引量:17
标识
DOI:10.1142/s0129065721500106
摘要

A reliable neural-machine interface is essential for humans to intuitively interact with advanced robotic hands in an unconstrained environment. Existing neural decoding approaches utilize either discrete hand gesture-based pattern recognition or continuous force decoding with one finger at a time. We developed a neural decoding technique that allowed continuous and concurrent prediction of forces of different fingers based on spinal motoneuron firing information. High-density skin-surface electromyogram (HD-EMG) signals of finger extensor muscle were recorded, while human participants produced isometric flexion forces in a dexterous manner (i.e. produced varying forces using either a single finger or multiple fingers concurrently). Motoneuron firing information was extracted from the EMG signals using a blind source separation technique, and each identified neuron was further classified to be associated with a given finger. The forces of individual fingers were then predicted concurrently by utilizing the corresponding motoneuron pool firing frequency of individual fingers. Compared with conventional approaches, our technique led to better prediction performances, i.e. a higher correlation ([Formula: see text] versus [Formula: see text]), a lower prediction error ([Formula: see text]% MVC versus [Formula: see text]% MVC), and a higher accuracy in finger state (rest/active) prediction ([Formula: see text]% versus [Formula: see text]%). Our decoding method demonstrated the possibility of classifying motoneurons for different fingers, which significantly alleviated the cross-talk issue of EMG recordings from neighboring hand muscles, and allowed the decoding of finger forces individually and concurrently. The outcomes offered a robust neural-machine interface that could allow users to intuitively control robotic hands in a dexterous manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助cybbbbbb采纳,获得10
刚刚
果汁发布了新的文献求助10
刚刚
1秒前
1秒前
Lucas应助柚子采纳,获得10
1秒前
MADKAI发布了新的文献求助10
1秒前
2秒前
爆米花应助咕咕咕采纳,获得10
2秒前
zxy发布了新的文献求助10
2秒前
3秒前
醉人的仔发布了新的文献求助10
3秒前
daguan完成签到,获得积分10
3秒前
桐桐应助nikai采纳,获得10
3秒前
4秒前
5秒前
123完成签到,获得积分10
5秒前
善良香岚发布了新的文献求助10
5秒前
6秒前
6秒前
444完成签到,获得积分10
6秒前
任一发布了新的文献求助30
6秒前
莉莉发布了新的文献求助10
7秒前
Zoe发布了新的文献求助10
7秒前
Hover完成签到,获得积分10
7秒前
自然的茉莉完成签到,获得积分10
8秒前
8秒前
Mandy完成签到,获得积分10
8秒前
9秒前
脑洞疼应助qaq采纳,获得10
9秒前
世界尽头发布了新的文献求助10
9秒前
小二郎应助科研民工采纳,获得10
9秒前
10秒前
无奈满天发布了新的文献求助10
10秒前
11秒前
MADKAI发布了新的文献求助10
11秒前
11秒前
贪玩丸子完成签到,获得积分10
11秒前
神勇的雅香应助liutaili采纳,获得10
12秒前
KSGGS完成签到,获得积分10
12秒前
YANG关注了科研通微信公众号
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759