Concurrent Prediction of Finger Forces Based on Source Separation and Classification of Neuron Discharge Information

解码方法 计算机科学 等长运动 神经解码 接口(物质) 脑-机接口 人工智能 语音识别 手势 模式识别(心理学) 算法 脑电图 神经科学 心理学 医学 气泡 最大气泡压力法 并行计算 物理疗法
作者
Zheng Yang,Xiaogang Hu
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:31 (06): 2150010-2150010 被引量:17
标识
DOI:10.1142/s0129065721500106
摘要

A reliable neural-machine interface is essential for humans to intuitively interact with advanced robotic hands in an unconstrained environment. Existing neural decoding approaches utilize either discrete hand gesture-based pattern recognition or continuous force decoding with one finger at a time. We developed a neural decoding technique that allowed continuous and concurrent prediction of forces of different fingers based on spinal motoneuron firing information. High-density skin-surface electromyogram (HD-EMG) signals of finger extensor muscle were recorded, while human participants produced isometric flexion forces in a dexterous manner (i.e. produced varying forces using either a single finger or multiple fingers concurrently). Motoneuron firing information was extracted from the EMG signals using a blind source separation technique, and each identified neuron was further classified to be associated with a given finger. The forces of individual fingers were then predicted concurrently by utilizing the corresponding motoneuron pool firing frequency of individual fingers. Compared with conventional approaches, our technique led to better prediction performances, i.e. a higher correlation ([Formula: see text] versus [Formula: see text]), a lower prediction error ([Formula: see text]% MVC versus [Formula: see text]% MVC), and a higher accuracy in finger state (rest/active) prediction ([Formula: see text]% versus [Formula: see text]%). Our decoding method demonstrated the possibility of classifying motoneurons for different fingers, which significantly alleviated the cross-talk issue of EMG recordings from neighboring hand muscles, and allowed the decoding of finger forces individually and concurrently. The outcomes offered a robust neural-machine interface that could allow users to intuitively control robotic hands in a dexterous manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黑章鱼保罗完成签到,获得积分10
刚刚
文静谷秋完成签到,获得积分10
1秒前
Ttttt发布了新的文献求助10
2秒前
传奇3应助姚序东采纳,获得10
2秒前
2秒前
Sy发布了新的文献求助10
2秒前
DingShicong完成签到 ,获得积分10
2秒前
3秒前
聂落雁发布了新的文献求助10
3秒前
陈木子发布了新的文献求助10
3秒前
3秒前
朱子完成签到,获得积分10
4秒前
豌豆米应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
Rae完成签到 ,获得积分10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
李庭福发布了新的文献求助10
5秒前
ZX801发布了新的文献求助10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
帅气的绿凝完成签到,获得积分10
5秒前
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
ouyang发布了新的文献求助10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
able应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
6秒前
思源应助科研通管家采纳,获得30
6秒前
852应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得30
7秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338124
求助须知:如何正确求助?哪些是违规求助? 4475332
关于积分的说明 13928100
捐赠科研通 4370553
什么是DOI,文献DOI怎么找? 2401309
邀请新用户注册赠送积分活动 1394430
关于科研通互助平台的介绍 1366313