Concurrent Prediction of Finger Forces Based on Source Separation and Classification of Neuron Discharge Information

解码方法 计算机科学 等长运动 神经解码 接口(物质) 脑-机接口 人工智能 语音识别 手势 模式识别(心理学) 算法 脑电图 神经科学 心理学 最大气泡压力法 医学 气泡 并行计算 物理疗法
作者
Zheng Yang,Xiaogang Hu
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:31 (06): 2150010-2150010 被引量:17
标识
DOI:10.1142/s0129065721500106
摘要

A reliable neural-machine interface is essential for humans to intuitively interact with advanced robotic hands in an unconstrained environment. Existing neural decoding approaches utilize either discrete hand gesture-based pattern recognition or continuous force decoding with one finger at a time. We developed a neural decoding technique that allowed continuous and concurrent prediction of forces of different fingers based on spinal motoneuron firing information. High-density skin-surface electromyogram (HD-EMG) signals of finger extensor muscle were recorded, while human participants produced isometric flexion forces in a dexterous manner (i.e. produced varying forces using either a single finger or multiple fingers concurrently). Motoneuron firing information was extracted from the EMG signals using a blind source separation technique, and each identified neuron was further classified to be associated with a given finger. The forces of individual fingers were then predicted concurrently by utilizing the corresponding motoneuron pool firing frequency of individual fingers. Compared with conventional approaches, our technique led to better prediction performances, i.e. a higher correlation ([Formula: see text] versus [Formula: see text]), a lower prediction error ([Formula: see text]% MVC versus [Formula: see text]% MVC), and a higher accuracy in finger state (rest/active) prediction ([Formula: see text]% versus [Formula: see text]%). Our decoding method demonstrated the possibility of classifying motoneurons for different fingers, which significantly alleviated the cross-talk issue of EMG recordings from neighboring hand muscles, and allowed the decoding of finger forces individually and concurrently. The outcomes offered a robust neural-machine interface that could allow users to intuitively control robotic hands in a dexterous manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
调皮的手机完成签到,获得积分20
刚刚
雍雍完成签到 ,获得积分10
刚刚
1秒前
为与传发布了新的文献求助10
2秒前
风笛发布了新的文献求助10
2秒前
蹦蹦完成签到,获得积分10
4秒前
舒适的映安完成签到,获得积分10
4秒前
科研通AI2S应助chaohuiwang采纳,获得10
5秒前
无花果应助为与传采纳,获得10
5秒前
忧心的白羊完成签到,获得积分10
6秒前
风笛完成签到 ,获得积分10
8秒前
Yifan2024应助碧蓝可仁采纳,获得20
9秒前
13秒前
YANG发布了新的文献求助10
14秒前
莫等闲完成签到,获得积分10
14秒前
stephen完成签到,获得积分10
15秒前
1111111关注了科研通微信公众号
18秒前
19秒前
汉堡包应助直率的芷采纳,获得10
20秒前
YCG完成签到,获得积分10
22秒前
22秒前
23秒前
甘秦燕完成签到,获得积分10
24秒前
24秒前
小岚乖乖完成签到,获得积分10
25秒前
25秒前
25秒前
27秒前
cui发布了新的文献求助10
28秒前
小岚乖乖发布了新的文献求助10
29秒前
七叶树完成签到,获得积分10
29秒前
一叶扁舟发布了新的文献求助10
29秒前
30秒前
Jay发布了新的文献求助30
31秒前
英姑应助洛安采纳,获得10
31秒前
小蘑菇应助deemo采纳,获得10
32秒前
wjn完成签到,获得积分10
33秒前
圈圈完成签到,获得积分10
34秒前
嗷嗷完成签到 ,获得积分10
35秒前
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Generative AI in Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3355360
求助须知:如何正确求助?哪些是违规求助? 2979245
关于积分的说明 8689538
捐赠科研通 2660856
什么是DOI,文献DOI怎么找? 1456896
科研通“疑难数据库(出版商)”最低求助积分说明 674497
邀请新用户注册赠送积分活动 665381