Concurrent Prediction of Finger Forces Based on Source Separation and Classification of Neuron Discharge Information

解码方法 计算机科学 等长运动 神经解码 接口(物质) 脑-机接口 人工智能 语音识别 手势 模式识别(心理学) 算法 脑电图 神经科学 心理学 最大气泡压力法 医学 气泡 并行计算 物理疗法
作者
Zheng Yang,Xiaogang Hu
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:31 (06): 2150010-2150010 被引量:17
标识
DOI:10.1142/s0129065721500106
摘要

A reliable neural-machine interface is essential for humans to intuitively interact with advanced robotic hands in an unconstrained environment. Existing neural decoding approaches utilize either discrete hand gesture-based pattern recognition or continuous force decoding with one finger at a time. We developed a neural decoding technique that allowed continuous and concurrent prediction of forces of different fingers based on spinal motoneuron firing information. High-density skin-surface electromyogram (HD-EMG) signals of finger extensor muscle were recorded, while human participants produced isometric flexion forces in a dexterous manner (i.e. produced varying forces using either a single finger or multiple fingers concurrently). Motoneuron firing information was extracted from the EMG signals using a blind source separation technique, and each identified neuron was further classified to be associated with a given finger. The forces of individual fingers were then predicted concurrently by utilizing the corresponding motoneuron pool firing frequency of individual fingers. Compared with conventional approaches, our technique led to better prediction performances, i.e. a higher correlation ([Formula: see text] versus [Formula: see text]), a lower prediction error ([Formula: see text]% MVC versus [Formula: see text]% MVC), and a higher accuracy in finger state (rest/active) prediction ([Formula: see text]% versus [Formula: see text]%). Our decoding method demonstrated the possibility of classifying motoneurons for different fingers, which significantly alleviated the cross-talk issue of EMG recordings from neighboring hand muscles, and allowed the decoding of finger forces individually and concurrently. The outcomes offered a robust neural-machine interface that could allow users to intuitively control robotic hands in a dexterous manner.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TT完成签到,获得积分10
刚刚
yueban发布了新的文献求助10
1秒前
2秒前
领导范儿应助想躺平采纳,获得10
3秒前
搜集达人应助超帅孱采纳,获得10
3秒前
大树梨发布了新的文献求助10
3秒前
Jasper应助彩色的平露采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
Abner完成签到,获得积分10
4秒前
小蘑菇应助张三采纳,获得10
4秒前
5秒前
chang发布了新的文献求助10
5秒前
斯文败类应助Lorry采纳,获得10
6秒前
6秒前
zzz发布了新的文献求助10
6秒前
pinkham_chen完成签到,获得积分10
6秒前
7秒前
友好的绮彤完成签到 ,获得积分10
7秒前
kongzy发布了新的文献求助10
7秒前
9秒前
媛肖发布了新的文献求助20
9秒前
Xcj完成签到,获得积分10
9秒前
10秒前
Owen应助纳川采纳,获得10
11秒前
南晴完成签到 ,获得积分20
11秒前
脑洞疼应助Li采纳,获得10
11秒前
qbxiaojie发布了新的文献求助10
11秒前
12秒前
briefyark完成签到,获得积分10
12秒前
12秒前
柠檬不萌发布了新的文献求助20
13秒前
13秒前
Hello应助Jerry采纳,获得10
13秒前
faustss完成签到,获得积分10
13秒前
li发布了新的文献求助10
13秒前
13秒前
kongzy完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
科目三应助YBR采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728317
求助须知:如何正确求助?哪些是违规求助? 5312368
关于积分的说明 15313794
捐赠科研通 4875546
什么是DOI,文献DOI怎么找? 2618882
邀请新用户注册赠送积分活动 1568431
关于科研通互助平台的介绍 1525095