Concurrent Prediction of Finger Forces Based on Source Separation and Classification of Neuron Discharge Information

解码方法 计算机科学 等长运动 神经解码 接口(物质) 脑-机接口 人工智能 语音识别 手势 模式识别(心理学) 算法 脑电图 神经科学 心理学 医学 气泡 最大气泡压力法 并行计算 物理疗法
作者
Zheng Yang,Xiaogang Hu
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:31 (06): 2150010-2150010 被引量:17
标识
DOI:10.1142/s0129065721500106
摘要

A reliable neural-machine interface is essential for humans to intuitively interact with advanced robotic hands in an unconstrained environment. Existing neural decoding approaches utilize either discrete hand gesture-based pattern recognition or continuous force decoding with one finger at a time. We developed a neural decoding technique that allowed continuous and concurrent prediction of forces of different fingers based on spinal motoneuron firing information. High-density skin-surface electromyogram (HD-EMG) signals of finger extensor muscle were recorded, while human participants produced isometric flexion forces in a dexterous manner (i.e. produced varying forces using either a single finger or multiple fingers concurrently). Motoneuron firing information was extracted from the EMG signals using a blind source separation technique, and each identified neuron was further classified to be associated with a given finger. The forces of individual fingers were then predicted concurrently by utilizing the corresponding motoneuron pool firing frequency of individual fingers. Compared with conventional approaches, our technique led to better prediction performances, i.e. a higher correlation ([Formula: see text] versus [Formula: see text]), a lower prediction error ([Formula: see text]% MVC versus [Formula: see text]% MVC), and a higher accuracy in finger state (rest/active) prediction ([Formula: see text]% versus [Formula: see text]%). Our decoding method demonstrated the possibility of classifying motoneurons for different fingers, which significantly alleviated the cross-talk issue of EMG recordings from neighboring hand muscles, and allowed the decoding of finger forces individually and concurrently. The outcomes offered a robust neural-machine interface that could allow users to intuitively control robotic hands in a dexterous manner.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
月月发布了新的文献求助10
刚刚
lbuild完成签到,获得积分10
1秒前
F-超哥发布了新的文献求助10
1秒前
酷酷的老头完成签到,获得积分10
2秒前
典雅又夏完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
十月关注了科研通微信公众号
3秒前
4秒前
研友_GZb9an完成签到,获得积分10
4秒前
HAO完成签到,获得积分10
4秒前
传奇3应助boyaqin采纳,获得10
4秒前
田様应助雾隐采纳,获得10
5秒前
小蘑菇应助陈陈采纳,获得10
5秒前
6秒前
lhy发布了新的文献求助10
7秒前
星辰大海应助吴华鑫采纳,获得10
7秒前
辛勤的幻莲完成签到 ,获得积分10
8秒前
科研通AI2S应助miemie66采纳,获得10
8秒前
orixero应助RK_404采纳,获得10
8秒前
李健的粉丝团团长应助zzz采纳,获得10
9秒前
reggielike完成签到 ,获得积分10
10秒前
kaitohan完成签到,获得积分10
11秒前
11秒前
花痴的沛文完成签到,获得积分20
11秒前
长情笑柳完成签到,获得积分10
13秒前
14秒前
文艺的真完成签到,获得积分10
15秒前
万能图书馆应助葛优采纳,获得10
15秒前
15秒前
zzz完成签到,获得积分10
15秒前
Hello应助侯一刀采纳,获得10
17秒前
零点起步完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
古铜完成签到 ,获得积分10
19秒前
19秒前
orixero应助ID8采纳,获得10
19秒前
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659958
求助须知:如何正确求助?哪些是违规求助? 4830577
关于积分的说明 15088675
捐赠科研通 4818565
什么是DOI,文献DOI怎么找? 2578667
邀请新用户注册赠送积分活动 1533290
关于科研通互助平台的介绍 1492016