Concurrent Prediction of Finger Forces Based on Source Separation and Classification of Neuron Discharge Information

解码方法 计算机科学 等长运动 神经解码 接口(物质) 脑-机接口 人工智能 语音识别 手势 模式识别(心理学) 算法 脑电图 神经科学 心理学 最大气泡压力法 医学 气泡 并行计算 物理疗法
作者
Zheng Yang,Xiaogang Hu
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:31 (06): 2150010-2150010 被引量:17
标识
DOI:10.1142/s0129065721500106
摘要

A reliable neural-machine interface is essential for humans to intuitively interact with advanced robotic hands in an unconstrained environment. Existing neural decoding approaches utilize either discrete hand gesture-based pattern recognition or continuous force decoding with one finger at a time. We developed a neural decoding technique that allowed continuous and concurrent prediction of forces of different fingers based on spinal motoneuron firing information. High-density skin-surface electromyogram (HD-EMG) signals of finger extensor muscle were recorded, while human participants produced isometric flexion forces in a dexterous manner (i.e. produced varying forces using either a single finger or multiple fingers concurrently). Motoneuron firing information was extracted from the EMG signals using a blind source separation technique, and each identified neuron was further classified to be associated with a given finger. The forces of individual fingers were then predicted concurrently by utilizing the corresponding motoneuron pool firing frequency of individual fingers. Compared with conventional approaches, our technique led to better prediction performances, i.e. a higher correlation ([Formula: see text] versus [Formula: see text]), a lower prediction error ([Formula: see text]% MVC versus [Formula: see text]% MVC), and a higher accuracy in finger state (rest/active) prediction ([Formula: see text]% versus [Formula: see text]%). Our decoding method demonstrated the possibility of classifying motoneurons for different fingers, which significantly alleviated the cross-talk issue of EMG recordings from neighboring hand muscles, and allowed the decoding of finger forces individually and concurrently. The outcomes offered a robust neural-machine interface that could allow users to intuitively control robotic hands in a dexterous manner.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助ddd采纳,获得10
刚刚
zzz完成签到,获得积分10
刚刚
星星发布了新的文献求助10
刚刚
刚刚
Qian完成签到,获得积分10
刚刚
yyyyyyyyy发布了新的文献求助10
刚刚
1秒前
jinmuna发布了新的文献求助10
1秒前
乐观的煎蛋关注了科研通微信公众号
2秒前
大佛老爷完成签到,获得积分20
2秒前
量子星尘发布了新的文献求助30
2秒前
瘦瘦慕凝完成签到,获得积分10
3秒前
Chenly发布了新的文献求助10
4秒前
4秒前
大尾巴白完成签到,获得积分10
5秒前
风清扬发布了新的文献求助10
5秒前
尹哲发布了新的文献求助10
5秒前
梦丽有人发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
liang完成签到,获得积分10
5秒前
6秒前
6秒前
bkagyin应助huang采纳,获得10
6秒前
臭臭发布了新的文献求助10
7秒前
7秒前
Sindy发布了新的文献求助10
9秒前
9秒前
zzz发布了新的文献求助10
9秒前
10秒前
10秒前
墨白白完成签到,获得积分10
10秒前
hsm发布了新的文献求助10
10秒前
ss完成签到,获得积分10
10秒前
在水一方应助愉快的莹采纳,获得10
11秒前
11秒前
CodeCraft应助沉默是金采纳,获得10
11秒前
11秒前
贪玩的方盒完成签到,获得积分10
11秒前
wangchong完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718656
求助须知:如何正确求助?哪些是违规求助? 5253667
关于积分的说明 15286658
捐赠科研通 4868722
什么是DOI,文献DOI怎么找? 2614394
邀请新用户注册赠送积分活动 1564266
关于科研通互助平台的介绍 1521785