Predicting complications of diabetes mellitus using advanced machine learning algorithms

循环神经网络 随机森林 医学 深度学习 机器学习 计算机科学 病历 人工智能 糖尿病 多层感知器 图表 算法 人工神经网络 内科学 统计 内分泌学 数学
作者
Branimir Ljubic,Ameen Abdel Hai,Marija Stanojević,Wilson Diaz,Daniel Polimac,Martin Pavlovski,Zoran Obradović
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:27 (9): 1343-1351 被引量:51
标识
DOI:10.1093/jamia/ocaa120
摘要

Abstract Objective We sought to predict if patients with type 2 diabetes mellitus (DM2) would develop 10 selected complications. Accurate prediction of complications could help with more targeted measures that would prevent or slow down their development. Materials and Methods Experiments were conducted on the Healthcare Cost and Utilization Project State Inpatient Databases of California for the period of 2003 to 2011. Recurrent neural network (RNN) long short-term memory (LSTM) and RNN gated recurrent unit (GRU) deep learning methods were designed and compared with random forest and multilayer perceptron traditional models. Prediction accuracy of selected complications were compared on 3 settings corresponding to minimum number of hospitalizations between diabetes diagnosis and the diagnosis of complications. Results The diagnosis domain was used for experiments. The best results were achieved with RNN GRU model, followed by RNN LSTM model. The prediction accuracy achieved with RNN GRU model was between 73% (myocardial infarction) and 83% (chronic ischemic heart disease), while accuracy of traditional models was between 66% – 76%. Discussion The number of hospitalizations was an important factor for the prediction accuracy. Experiments with 4 hospitalizations achieved significantly better accuracy than with 2 hospitalizations. To achieve improved accuracy deep learning models required training on at least 1000 patients and accuracy significantly dropped if training datasets contained 500 patients. The prediction accuracy of complications decreases over time period. Considering individual complications, the best accuracy was achieved on depressive disorder and chronic ischemic heart disease. Conclusions The RNN GRU model was the best choice for electronic medical record type of data, based on the achieved results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
敏敏敏呐完成签到,获得积分10
刚刚
刚刚
lalala应助又又采纳,获得10
刚刚
香蕉觅云应助童心未泯采纳,获得10
1秒前
高兴的冰棍完成签到,获得积分10
1秒前
2秒前
2秒前
古月完成签到,获得积分10
3秒前
zjhzslq完成签到,获得积分10
3秒前
4秒前
Akim应助cuihf06采纳,获得10
5秒前
sjsuA完成签到,获得积分0
5秒前
ccc发布了新的文献求助10
6秒前
Xenia发布了新的文献求助10
6秒前
7秒前
8秒前
毕烨华发布了新的文献求助10
8秒前
开朗的榴莲完成签到,获得积分10
8秒前
Distance发布了新的文献求助10
8秒前
打打应助单薄的忆枫采纳,获得10
8秒前
Mor完成签到,获得积分10
9秒前
天天快乐应助谷jm采纳,获得10
9秒前
10秒前
10秒前
10秒前
lysixsixsix完成签到,获得积分10
11秒前
11秒前
qingfengnai完成签到,获得积分10
11秒前
11秒前
善学以致用应助倚栏听风采纳,获得10
12秒前
谨慎的书雁完成签到,获得积分10
13秒前
13秒前
锅包肉完成签到,获得积分10
13秒前
照夜清完成签到,获得积分10
13秒前
14秒前
qq小兵发布了新的文献求助10
15秒前
李爱国应助小郑的姜姜采纳,获得10
15秒前
打打应助gqb采纳,获得10
15秒前
荔枝完成签到,获得积分10
15秒前
喜糖发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3523911
求助须知:如何正确求助?哪些是违规求助? 3104708
关于积分的说明 9271212
捐赠科研通 2801723
什么是DOI,文献DOI怎么找? 1537699
邀请新用户注册赠送积分活动 715708
科研通“疑难数据库(出版商)”最低求助积分说明 708975