Predicting complications of diabetes mellitus using advanced machine learning algorithms

循环神经网络 随机森林 医学 深度学习 机器学习 计算机科学 病历 人工智能 糖尿病 多层感知器 图表 算法 人工神经网络 内科学 统计 内分泌学 数学
作者
Branimir Ljubic,Ameen Abdel Hai,Marija Stanojević,Wilson Diaz,Daniel Polimac,Martin Pavlovski,Zoran Obradović
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:27 (9): 1343-1351 被引量:51
标识
DOI:10.1093/jamia/ocaa120
摘要

Abstract Objective We sought to predict if patients with type 2 diabetes mellitus (DM2) would develop 10 selected complications. Accurate prediction of complications could help with more targeted measures that would prevent or slow down their development. Materials and Methods Experiments were conducted on the Healthcare Cost and Utilization Project State Inpatient Databases of California for the period of 2003 to 2011. Recurrent neural network (RNN) long short-term memory (LSTM) and RNN gated recurrent unit (GRU) deep learning methods were designed and compared with random forest and multilayer perceptron traditional models. Prediction accuracy of selected complications were compared on 3 settings corresponding to minimum number of hospitalizations between diabetes diagnosis and the diagnosis of complications. Results The diagnosis domain was used for experiments. The best results were achieved with RNN GRU model, followed by RNN LSTM model. The prediction accuracy achieved with RNN GRU model was between 73% (myocardial infarction) and 83% (chronic ischemic heart disease), while accuracy of traditional models was between 66% – 76%. Discussion The number of hospitalizations was an important factor for the prediction accuracy. Experiments with 4 hospitalizations achieved significantly better accuracy than with 2 hospitalizations. To achieve improved accuracy deep learning models required training on at least 1000 patients and accuracy significantly dropped if training datasets contained 500 patients. The prediction accuracy of complications decreases over time period. Considering individual complications, the best accuracy was achieved on depressive disorder and chronic ischemic heart disease. Conclusions The RNN GRU model was the best choice for electronic medical record type of data, based on the achieved results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
GQ完成签到 ,获得积分20
1秒前
火星上的穆完成签到,获得积分10
2秒前
传奇3应助冷傲火龙果采纳,获得10
2秒前
贾茗宇完成签到,获得积分10
2秒前
bian发布了新的文献求助10
3秒前
3秒前
Picopy完成签到,获得积分10
3秒前
科研通AI5应助jerryang采纳,获得10
3秒前
华仔应助生动十八采纳,获得10
4秒前
4秒前
小杭76应助简单如容采纳,获得10
4秒前
5秒前
liangzai发布了新的文献求助10
5秒前
5秒前
Akim应助珍珍采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
FashionBoy应助任性醉山采纳,获得10
6秒前
6秒前
134345发布了新的文献求助10
7秒前
科研通AI5应助山水之乐采纳,获得10
7秒前
LPH发布了新的文献求助10
7秒前
哈哈发布了新的文献求助10
8秒前
9秒前
xx发布了新的文献求助10
9秒前
cherish发布了新的文献求助10
12秒前
13秒前
久久丫完成签到 ,获得积分10
13秒前
13秒前
14秒前
外外完成签到,获得积分10
14秒前
14秒前
die发布了新的文献求助10
14秒前
15秒前
15秒前
ccalvintan发布了新的文献求助10
16秒前
孤独大娘发布了新的文献求助10
16秒前
111发布了新的文献求助10
16秒前
贾茗宇发布了新的文献求助10
16秒前
健康的妙菱完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934228
求助须知:如何正确求助?哪些是违规求助? 4202186
关于积分的说明 13056265
捐赠科研通 3976412
什么是DOI,文献DOI怎么找? 2178969
邀请新用户注册赠送积分活动 1195288
关于科研通互助平台的介绍 1106655