Predicting complications of diabetes mellitus using advanced machine learning algorithms

循环神经网络 随机森林 医学 深度学习 机器学习 计算机科学 病历 人工智能 糖尿病 多层感知器 图表 算法 人工神经网络 内科学 统计 内分泌学 数学
作者
Branimir Ljubic,Ameen Abdel Hai,Marija Stanojević,Wilson Diaz,Daniel Polimac,Martin Pavlovski,Zoran Obradović
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:27 (9): 1343-1351 被引量:51
标识
DOI:10.1093/jamia/ocaa120
摘要

Abstract Objective We sought to predict if patients with type 2 diabetes mellitus (DM2) would develop 10 selected complications. Accurate prediction of complications could help with more targeted measures that would prevent or slow down their development. Materials and Methods Experiments were conducted on the Healthcare Cost and Utilization Project State Inpatient Databases of California for the period of 2003 to 2011. Recurrent neural network (RNN) long short-term memory (LSTM) and RNN gated recurrent unit (GRU) deep learning methods were designed and compared with random forest and multilayer perceptron traditional models. Prediction accuracy of selected complications were compared on 3 settings corresponding to minimum number of hospitalizations between diabetes diagnosis and the diagnosis of complications. Results The diagnosis domain was used for experiments. The best results were achieved with RNN GRU model, followed by RNN LSTM model. The prediction accuracy achieved with RNN GRU model was between 73% (myocardial infarction) and 83% (chronic ischemic heart disease), while accuracy of traditional models was between 66% – 76%. Discussion The number of hospitalizations was an important factor for the prediction accuracy. Experiments with 4 hospitalizations achieved significantly better accuracy than with 2 hospitalizations. To achieve improved accuracy deep learning models required training on at least 1000 patients and accuracy significantly dropped if training datasets contained 500 patients. The prediction accuracy of complications decreases over time period. Considering individual complications, the best accuracy was achieved on depressive disorder and chronic ischemic heart disease. Conclusions The RNN GRU model was the best choice for electronic medical record type of data, based on the achieved results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucky完成签到,获得积分10
1秒前
lkk完成签到,获得积分10
1秒前
科研通AI6应助pbj采纳,获得10
1秒前
zzz08完成签到,获得积分10
1秒前
李瑞完成签到,获得积分10
2秒前
2秒前
科研通AI6应助周末采纳,获得10
3秒前
小冰完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
Akim应助leosunnn采纳,获得10
3秒前
3秒前
烟花应助孤独的匕采纳,获得10
4秒前
现代宛丝发布了新的文献求助10
4秒前
GreenT完成签到,获得积分10
4秒前
秀丽小猫咪应助ww采纳,获得100
4秒前
我是老大应助无心的亦玉采纳,获得10
4秒前
4秒前
5秒前
5秒前
苏苏弋完成签到 ,获得积分10
5秒前
leey发布了新的文献求助10
5秒前
852应助苏雨康采纳,获得10
5秒前
无花果应助Rocky_Qi采纳,获得10
5秒前
认真的裙子完成签到,获得积分10
6秒前
6秒前
zxq完成签到,获得积分10
6秒前
鲁成危完成签到,获得积分10
7秒前
7秒前
7秒前
123完成签到,获得积分20
7秒前
旺旺小胖发布了新的文献求助10
8秒前
8秒前
FashionBoy应助闪闪采纳,获得10
8秒前
8秒前
cL完成签到 ,获得积分10
8秒前
9秒前
清梦完成签到,获得积分10
9秒前
shanage应助光亮初兰采纳,获得10
9秒前
陈醒醒完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629190
求助须知:如何正确求助?哪些是违规求助? 4719742
关于积分的说明 14968190
捐赠科研通 4787245
什么是DOI,文献DOI怎么找? 2556261
邀请新用户注册赠送积分活动 1517404
关于科研通互助平台的介绍 1478115