循环神经网络
随机森林
医学
深度学习
机器学习
计算机科学
病历
人工智能
糖尿病
多层感知器
图表
算法
人工神经网络
内科学
统计
数学
内分泌学
作者
Branimir Ljubic,Ameen Abdel Hai,Marija Stanojević,Wilson Diaz,Daniel Polimac,Martin Pavlovski,Zoran Obradović
标识
DOI:10.1093/jamia/ocaa120
摘要
Abstract Objective We sought to predict if patients with type 2 diabetes mellitus (DM2) would develop 10 selected complications. Accurate prediction of complications could help with more targeted measures that would prevent or slow down their development. Materials and Methods Experiments were conducted on the Healthcare Cost and Utilization Project State Inpatient Databases of California for the period of 2003 to 2011. Recurrent neural network (RNN) long short-term memory (LSTM) and RNN gated recurrent unit (GRU) deep learning methods were designed and compared with random forest and multilayer perceptron traditional models. Prediction accuracy of selected complications were compared on 3 settings corresponding to minimum number of hospitalizations between diabetes diagnosis and the diagnosis of complications. Results The diagnosis domain was used for experiments. The best results were achieved with RNN GRU model, followed by RNN LSTM model. The prediction accuracy achieved with RNN GRU model was between 73% (myocardial infarction) and 83% (chronic ischemic heart disease), while accuracy of traditional models was between 66% – 76%. Discussion The number of hospitalizations was an important factor for the prediction accuracy. Experiments with 4 hospitalizations achieved significantly better accuracy than with 2 hospitalizations. To achieve improved accuracy deep learning models required training on at least 1000 patients and accuracy significantly dropped if training datasets contained 500 patients. The prediction accuracy of complications decreases over time period. Considering individual complications, the best accuracy was achieved on depressive disorder and chronic ischemic heart disease. Conclusions The RNN GRU model was the best choice for electronic medical record type of data, based on the achieved results.
科研通智能强力驱动
Strongly Powered by AbleSci AI