Predicting complications of diabetes mellitus using advanced machine learning algorithms

循环神经网络 随机森林 医学 深度学习 机器学习 计算机科学 病历 人工智能 糖尿病 多层感知器 图表 算法 人工神经网络 内科学 统计 数学 内分泌学
作者
Branimir Ljubic,Ameen Abdel Hai,Marija Stanojević,Wilson Diaz,Daniel Polimac,Martin Pavlovski,Zoran Obradović
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:27 (9): 1343-1351 被引量:51
标识
DOI:10.1093/jamia/ocaa120
摘要

Abstract Objective We sought to predict if patients with type 2 diabetes mellitus (DM2) would develop 10 selected complications. Accurate prediction of complications could help with more targeted measures that would prevent or slow down their development. Materials and Methods Experiments were conducted on the Healthcare Cost and Utilization Project State Inpatient Databases of California for the period of 2003 to 2011. Recurrent neural network (RNN) long short-term memory (LSTM) and RNN gated recurrent unit (GRU) deep learning methods were designed and compared with random forest and multilayer perceptron traditional models. Prediction accuracy of selected complications were compared on 3 settings corresponding to minimum number of hospitalizations between diabetes diagnosis and the diagnosis of complications. Results The diagnosis domain was used for experiments. The best results were achieved with RNN GRU model, followed by RNN LSTM model. The prediction accuracy achieved with RNN GRU model was between 73% (myocardial infarction) and 83% (chronic ischemic heart disease), while accuracy of traditional models was between 66% – 76%. Discussion The number of hospitalizations was an important factor for the prediction accuracy. Experiments with 4 hospitalizations achieved significantly better accuracy than with 2 hospitalizations. To achieve improved accuracy deep learning models required training on at least 1000 patients and accuracy significantly dropped if training datasets contained 500 patients. The prediction accuracy of complications decreases over time period. Considering individual complications, the best accuracy was achieved on depressive disorder and chronic ischemic heart disease. Conclusions The RNN GRU model was the best choice for electronic medical record type of data, based on the achieved results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仁者无惧完成签到 ,获得积分10
3秒前
echo完成签到 ,获得积分10
3秒前
浪浪山完成签到,获得积分10
4秒前
小二郎应助vict采纳,获得30
4秒前
二三发布了新的文献求助10
5秒前
烟花应助WN采纳,获得10
5秒前
blueskyzhi完成签到,获得积分10
6秒前
隐形曼青应助zy采纳,获得10
7秒前
sct完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
XS_QI完成签到 ,获得积分10
14秒前
15秒前
Eureka关注了科研通微信公众号
16秒前
JamesPei应助科研通管家采纳,获得10
18秒前
Hello应助科研通管家采纳,获得10
18秒前
ED应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
夕诙应助科研通管家采纳,获得20
18秒前
18秒前
望北完成签到 ,获得积分10
18秒前
19秒前
20秒前
20秒前
21秒前
21秒前
22秒前
23秒前
勤劳糜发布了新的文献求助10
23秒前
24秒前
卡牌大师完成签到,获得积分10
25秒前
颜瑞发布了新的文献求助10
26秒前
熊i发布了新的文献求助10
27秒前
fuyu98发布了新的文献求助10
27秒前
Meya发布了新的文献求助10
29秒前
29秒前
30秒前
31秒前
香蕉觅云应助LiXingchen采纳,获得10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966223
求助须知:如何正确求助?哪些是违规求助? 3511662
关于积分的说明 11159065
捐赠科研通 3246265
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874331
科研通“疑难数据库(出版商)”最低求助积分说明 804343