材料科学
脆性
复合材料
水泥
破损
极限抗拉强度
消散
聚合物
弯曲
可塑性
红外光谱学
拉伸试验
热力学
量子力学
物理
作者
Tahereh Mohammadi Hafshejani,Chao Feng,Jonas Wohlgemuth,Felix Krause,Andreas Bogner,Frank Dehn,Peter Thissen
标识
DOI:10.1177/0021998320952152
摘要
It is often of great importance in engineering to know precisely the properties of a material used with regard to its strength, its plasticity or its brittleness, its elasticity, and some other properties. For this purpose, material samples are tested in a tensile test by clamping the sample with a known starting cross-section in a tensile testing machine and loading it with a tensile force F. The force is then graphically displayed over the length change ΔL caused. This curve is called the force-extension diagram. In this study, a new measurement method enables for the first time, depending on the applied uniaxial stress, an insight at the atomic level into various energy dissipation processes at cement-based materials with the help of infrared spectroscopy. The samples are modified by adding SiO 2 particles, which are coated by a polymer (PEG-MDI-DMPA) of different PEG molecular weights. Results show that elongating and breakage of [Formula: see text] and [Formula: see text] bonds play an essential role in the strain energy dissipation. Compared to the pure cement, the modified samples are affected more by elongating and breakage of [Formula: see text] as the admixture can effectively reduce the energy barrier of the hydrolytic reaction. The incorporating of particles into the cement matrix induces new mechanisms for energy dissipation by stretching of [Formula: see text] bending vibrations. Stretching vibration of the [Formula: see text] group indicates that part of the energy is dissipated by breakage of hydrogen bonding between the carboxyl group and PEG chains. Besides, a higher value of the ultimate fracture force following an increase in the molecular weight of PEG shows stronger bonding between particles and the cement matrix. As the chain-length of PEG is increased, less energy is absorbed through the other processes (especially at a higher level of strain). Thus, there is a balance between the whole deformation (toughness) and the strength of samples with the increase of the PEG molecular weight.
科研通智能强力驱动
Strongly Powered by AbleSci AI