Diversified Technologies in Internet of Vehicles Under Intelligent Edge Computing

计算机科学 传输延迟 计算机网络 边缘计算 GSM演进的增强数据速率 数据包丢失 网络数据包 传输(电信) 任务(项目管理) 实时计算 工程类 人工智能 电信 系统工程
作者
Zhihan Lv,Dongliang Chen,Qingjun Wang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:22 (4): 2048-2059 被引量:115
标识
DOI:10.1109/tits.2020.3019756
摘要

To investigate the diversified technologies in Internet of Vehicles (IoV) under intelligent edge computing, artificial intelligence, intelligent edge computing, and IoV are combined. Also, it proposes an IoV model for intelligent edge computing task offloading and migration under the SDVN (Software Defined Vehicular Networks) architecture, that is, the JDE-VCO (Joint Delay and Energy-Vehicle Computational task Offloading) optimization. And the simulation is performed. The results show that in the analysis of the impact of different offloading strategies on the IoV, it is found that the JDE-VCO algorithm is superior to other schemes in terms of transmission delay and total offloading energy consumption. In the analysis of the impact of the task unloading of the IoV, the JDE-VCO algorithm is less than RTO (Random Tasks Offloading) and UTO (Uniform Tasks Offloading) algorithm schemes in terms of the number of tasks per unit time, and the average task completion time for the same amount of uploaded data. In the analysis of the packet loss ratio and transmission delay, it can be found that the packet loss ratio and transmission delay of the JDE-VCO algorithm are less than the RTO and UTO algorithms. Moreover, the packet loss ratio of the JDE-VCO algorithm is about 0.1, and the transmission delay is stable at 0.2s, which has obvious advantages. Therefore, through research, the IoV model of task offloading and migration built by intelligent edge computing can significantly improve the load sharing rate, offloading efficiency, packet loss ratio, and transmission delay when the IoV is processing tasks and uploading data. It provides experimental basis for the improvement of the IoV system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
otto12306完成签到,获得积分10
1秒前
夜琉璃完成签到 ,获得积分10
2秒前
懒得理完成签到 ,获得积分10
2秒前
闫鹤文完成签到,获得积分10
4秒前
xwhl完成签到,获得积分10
4秒前
爱笑子默完成签到,获得积分10
6秒前
想养一只猫完成签到,获得积分20
6秒前
plaaf完成签到,获得积分10
6秒前
金毛大王应助机灵紫雪采纳,获得20
8秒前
小王完成签到,获得积分10
9秒前
肚子藤完成签到,获得积分10
11秒前
Kavin完成签到,获得积分10
12秒前
jor666完成签到,获得积分10
14秒前
16秒前
星星完成签到 ,获得积分10
17秒前
健壮洋葱完成签到 ,获得积分10
21秒前
今后应助谦让碧菡采纳,获得10
22秒前
功不唐捐完成签到,获得积分10
22秒前
ceeray23发布了新的文献求助20
23秒前
萝卜卷心菜完成签到 ,获得积分10
23秒前
协和_子鱼完成签到,获得积分0
24秒前
焱焱不忘完成签到 ,获得积分0
26秒前
刻苦的小土豆完成签到 ,获得积分10
26秒前
biu完成签到 ,获得积分10
27秒前
夏小安完成签到,获得积分10
27秒前
儒雅龙完成签到 ,获得积分10
28秒前
传奇3应助guoli采纳,获得10
28秒前
龙卷风完成签到,获得积分10
31秒前
明理的以亦完成签到,获得积分0
31秒前
科研通AI2S应助啦啦啦啦采纳,获得10
33秒前
gincle完成签到 ,获得积分10
33秒前
嘻嘻哈哈应助明理的以亦采纳,获得10
35秒前
NIHAO完成签到 ,获得积分10
37秒前
38秒前
Ziyi_Xu完成签到,获得积分10
39秒前
Xu完成签到,获得积分10
40秒前
木木杨完成签到,获得积分10
42秒前
打打应助龙卷风采纳,获得10
43秒前
沈华炜完成签到,获得积分10
44秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378541
求助须知:如何正确求助?哪些是违规求助? 4502955
关于积分的说明 14014761
捐赠科研通 4411567
什么是DOI,文献DOI怎么找? 2423362
邀请新用户注册赠送积分活动 1416284
关于科研通互助平台的介绍 1393703