单调多边形
数学
算法
趋同(经济学)
希尔伯特空间
集合(抽象数据类型)
惯性参考系
压缩传感
操作员(生物学)
计算机科学
纯数学
转录因子
基因
物理
量子力学
抑制因子
经济
生物化学
经济增长
化学
程序设计语言
几何学
标识
DOI:10.4153/s0008414x24000889
摘要
Abstract Two novel algorithms, which incorporate inertial terms and relaxation effects, are introduced to tackle a monotone inclusion problem. The weak and strong convergence of the algorithms are obtained under certain conditions, and the R -linear convergence for the first algorithm is demonstrated if the set-valued operator involved is strongly monotone in real Hilbert spaces. The proposed algorithms are applied to signal recovery problems and demonstrate improved performance compared to existing algorithms in the literature.
科研通智能强力驱动
Strongly Powered by AbleSci AI