Applying Conformal Prediction to a Deep Learning Model for Intracranial Hemorrhage Detection to Improve Trustworthiness

人工智能 可信赖性 深度学习 机器学习 预测值 计算机科学 医学 内科学 计算机安全
作者
Cooper U. Gamble,Shahriar Faghani,Bradley J. Erickson
出处
期刊:Radiology [Radiological Society of North America]
标识
DOI:10.1148/ryai.240032
摘要

“Just Accepted” papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To apply conformal prediction to a deep learning (DL) model for intracranial hemorrhage (ICH) detection and evaluate model performance in detection as well as model accuracy in identifying challenging cases. Materials and Methods This was a retrospective (November 2017 through December 2017) study of 491 noncontrast head CT volumes from the CQ500 dataset in which three senior radiologists annotated sections containing ICH. The dataset was split into definite and challenging (uncertain) subsets, where challenging images were defined as those in which there was disagreement among readers. A DL model was trained on 146 patients (mean age = 45.7, 70 females, 76 males) from the definite data (training dataset) to perform ICH localization and classification into five classes. To develop an uncertainty-aware DL model, 1,546 sections of the definite data (calibration dataset) was used for Mondrian conformal prediction (MCP). The uncertainty-aware DL model was tested on 8,401 definite and challenging sections to assess its ability to identify challenging sections. The difference in predictive performance ( P value) and ability to identify challenging sections (accuracy) were reported. Results After the MCP procedure, the model achieved an F1 score of 0.920 for ICH classification on the test dataset. Additionally, it correctly identified 6,837 of the 6,856 total challenging sections as challenging (99.7% accuracy). It did not incorrectly label any definite sections as challenging. Conclusion The uncertainty-aware MCP-augmented DL model achieved high performance in ICH detection and high accuracy in identifying challenging sections, suggesting its usefulness in automated ICH detection and potential to increase trustworthiness of DL models in radiology. ©RSNA, 2024
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
佩佩完成签到 ,获得积分10
1秒前
碧蓝老虎发布了新的文献求助10
1秒前
小琦琦发布了新的文献求助10
1秒前
3秒前
彭于晏应助kakafan采纳,获得10
5秒前
YQP发布了新的文献求助10
6秒前
小小苏荷完成签到,获得积分10
6秒前
6秒前
白嶷发布了新的文献求助10
7秒前
8秒前
LucienS完成签到,获得积分10
8秒前
小蘑菇应助jm采纳,获得10
8秒前
赘婿应助拔丝香芋采纳,获得10
10秒前
佳佳应助北北采纳,获得10
10秒前
hhh完成签到,获得积分10
10秒前
SciGPT应助lpp_采纳,获得10
11秒前
寒冷天亦发布了新的文献求助10
12秒前
瘦瘦的铅笔完成签到 ,获得积分10
13秒前
13秒前
DYW发布了新的文献求助10
13秒前
13秒前
13秒前
沉默的宛筠完成签到,获得积分10
13秒前
西音完成签到,获得积分10
14秒前
小二郎应助檀a采纳,获得10
14秒前
15秒前
顾矜应助默lk采纳,获得10
15秒前
科研鸟发布了新的文献求助30
16秒前
痴痴的噜完成签到,获得积分10
16秒前
怕黑的静蕾应助小琦琦采纳,获得10
16秒前
Fanzhixiang关注了科研通微信公众号
17秒前
Wmmmmm完成签到,获得积分10
18秒前
20秒前
kakafan发布了新的文献求助10
20秒前
研友_LpvElZ完成签到,获得积分10
20秒前
22秒前
科研通AI2S应助lpp_采纳,获得10
23秒前
24秒前
24秒前
bkagyin应助无私的以云采纳,获得10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966626
求助须知:如何正确求助?哪些是违规求助? 3512100
关于积分的说明 11161688
捐赠科研通 3246938
什么是DOI,文献DOI怎么找? 1793609
邀请新用户注册赠送积分活动 874495
科研通“疑难数据库(出版商)”最低求助积分说明 804420