Applying Conformal Prediction to a Deep Learning Model for Intracranial Hemorrhage Detection to Improve Trustworthiness

人工智能 可信赖性 深度学习 机器学习 预测值 计算机科学 医学 内科学 计算机安全
作者
Cooper U. Gamble,Shahriar Faghani,Bradley J. Erickson
出处
期刊:Radiology [Radiological Society of North America]
标识
DOI:10.1148/ryai.240032
摘要

“Just Accepted” papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To apply conformal prediction to a deep learning (DL) model for intracranial hemorrhage (ICH) detection and evaluate model performance in detection as well as model accuracy in identifying challenging cases. Materials and Methods This was a retrospective (November 2017 through December 2017) study of 491 noncontrast head CT volumes from the CQ500 dataset in which three senior radiologists annotated sections containing ICH. The dataset was split into definite and challenging (uncertain) subsets, where challenging images were defined as those in which there was disagreement among readers. A DL model was trained on 146 patients (mean age = 45.7, 70 females, 76 males) from the definite data (training dataset) to perform ICH localization and classification into five classes. To develop an uncertainty-aware DL model, 1,546 sections of the definite data (calibration dataset) was used for Mondrian conformal prediction (MCP). The uncertainty-aware DL model was tested on 8,401 definite and challenging sections to assess its ability to identify challenging sections. The difference in predictive performance ( P value) and ability to identify challenging sections (accuracy) were reported. Results After the MCP procedure, the model achieved an F1 score of 0.920 for ICH classification on the test dataset. Additionally, it correctly identified 6,837 of the 6,856 total challenging sections as challenging (99.7% accuracy). It did not incorrectly label any definite sections as challenging. Conclusion The uncertainty-aware MCP-augmented DL model achieved high performance in ICH detection and high accuracy in identifying challenging sections, suggesting its usefulness in automated ICH detection and potential to increase trustworthiness of DL models in radiology. ©RSNA, 2024
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
111发布了新的文献求助10
2秒前
2秒前
jojo发布了新的文献求助10
2秒前
比巴卜完成签到,获得积分10
3秒前
VaVa应助俭朴的期待采纳,获得10
3秒前
嘤嘤怪应助忧伤的书易采纳,获得10
4秒前
NexusExplorer应助mrmrer采纳,获得10
4秒前
嘤嘤怪应助忧伤的书易采纳,获得10
4秒前
36456657应助忧伤的书易采纳,获得10
4秒前
5秒前
5秒前
5秒前
欧欧发布了新的文献求助10
5秒前
7秒前
7秒前
Xxxx发布了新的文献求助10
7秒前
7秒前
tgd发布了新的文献求助10
7秒前
小米饭发布了新的文献求助10
7秒前
轻松大娘完成签到,获得积分10
8秒前
9秒前
hk1900发布了新的文献求助10
10秒前
研友_85YNe8完成签到,获得积分10
10秒前
小期待发布了新的文献求助10
10秒前
酷波er应助折光采纳,获得10
11秒前
11秒前
111完成签到,获得积分20
11秒前
轻松大娘发布了新的文献求助10
12秒前
12秒前
CYJ发布了新的文献求助10
13秒前
四月想毕业完成签到,获得积分10
13秒前
欧欧完成签到,获得积分10
13秒前
研友_85YNe8发布了新的文献求助30
13秒前
研友_Z7WGlZ发布了新的文献求助10
14秒前
14秒前
14秒前
wwwwddd发布了新的文献求助10
14秒前
16秒前
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3302470
求助须知:如何正确求助?哪些是违规求助? 2936959
关于积分的说明 8479422
捐赠科研通 2610753
什么是DOI,文献DOI怎么找? 1425334
科研通“疑难数据库(出版商)”最低求助积分说明 662340
邀请新用户注册赠送积分活动 646652