LI-YOLO: An Object Detection Algorithm for UAV Aerial Images in Low-Illumination Scenes

计算机视觉 人工智能 计算机科学 目标检测 对象(语法) 航拍照片 航空影像 计算机图形学(图像) 遥感 地理 模式识别(心理学) 图像(数学)
作者
Shouyuan Liu,Hao He,Zhichao Zhang,Yatong Zhou
出处
期刊:Drones [Multidisciplinary Digital Publishing Institute]
卷期号:8 (11): 653-653
标识
DOI:10.3390/drones8110653
摘要

With the development of unmanned aerial vehicle (UAV) technology, deep learning is becoming more and more widely used in object detection in UAV aerial images; however, detecting and identifying small objects in low-illumination scenes is still a major challenge. Aiming at the problem of low brightness, high noise, and obscure details of low-illumination images, an object detection algorithm, LI-YOLO (Low-Illumination You Only Look Once), for UAV aerial images in low-illumination scenes is proposed. Specifically, in the feature extraction section, this paper proposes a feature enhancement block (FEB) to realize global receptive field and context information learning through lightweight operations and embeds it into the C2f module at the end of the backbone network to alleviate the problems of high noise and detail blur caused by low illumination with very few parameter costs. In the feature fusion part, aiming to improve the detection performance for small objects in UAV aerial images, a shallow feature fusion network and a small object detection head are added. In addition, the adaptive spatial feature fusion structure (ASFF) is also introduced, which adaptively fuses information from different levels of feature maps by optimizing the feature fusion strategy so that the network can more accurately identify and locate objects of various scales. The experimental results show that the mAP50 of LI-YOLO reaches 76.6% on the DroneVehicle dataset and 90.8% on the LLVIP dataset. Compared with other current algorithms, LI-YOLO improves the mAP 50 by 3.1% on the DroneVehicle dataset and 6.9% on the LLVIP dataset. Experimental results show that the proposed algorithm can effectively improve object detection performance in low-illumination scenes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
归尘发布了新的文献求助10
刚刚
可爱的函函应助123123采纳,获得10
刚刚
可爱的函函应助玲哥儿采纳,获得10
刚刚
ksak607155完成签到,获得积分10
刚刚
刚刚
liuzhanyu发布了新的文献求助10
1秒前
shea完成签到,获得积分10
1秒前
zqqqqqq完成签到 ,获得积分10
1秒前
小蘑菇应助ameng采纳,获得10
2秒前
2秒前
2秒前
敕勒川发布了新的文献求助10
3秒前
一颗煤炭完成签到 ,获得积分10
3秒前
朱彬完成签到,获得积分10
3秒前
4秒前
科目三应助辛丽丽采纳,获得10
4秒前
sunnyjc发布了新的文献求助10
4秒前
华仔应助Yu采纳,获得10
5秒前
实验室应助科研通管家采纳,获得200
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
6秒前
庞航应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得30
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
干饭虫应助科研通管家采纳,获得10
6秒前
庞航应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
gaoyayaaa应助科研通管家采纳,获得30
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
ceeray23应助科研通管家采纳,获得10
6秒前
干饭虫应助科研通管家采纳,获得10
6秒前
小杭76应助科研通管家采纳,获得10
7秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5203058
求助须知:如何正确求助?哪些是违规求助? 4382742
关于积分的说明 13646505
捐赠科研通 4240027
什么是DOI,文献DOI怎么找? 2326295
邀请新用户注册赠送积分活动 1323935
关于科研通互助平台的介绍 1275919