LI-YOLO: An Object Detection Algorithm for UAV Aerial Images in Low-Illumination Scenes

计算机视觉 人工智能 计算机科学 目标检测 对象(语法) 航拍照片 航空影像 计算机图形学(图像) 遥感 地理 模式识别(心理学) 图像(数学)
作者
Shouyuan Liu,Hao He,Zhichao Zhang,Yatong Zhou
出处
期刊:Drones [Multidisciplinary Digital Publishing Institute]
卷期号:8 (11): 653-653
标识
DOI:10.3390/drones8110653
摘要

With the development of unmanned aerial vehicle (UAV) technology, deep learning is becoming more and more widely used in object detection in UAV aerial images; however, detecting and identifying small objects in low-illumination scenes is still a major challenge. Aiming at the problem of low brightness, high noise, and obscure details of low-illumination images, an object detection algorithm, LI-YOLO (Low-Illumination You Only Look Once), for UAV aerial images in low-illumination scenes is proposed. Specifically, in the feature extraction section, this paper proposes a feature enhancement block (FEB) to realize global receptive field and context information learning through lightweight operations and embeds it into the C2f module at the end of the backbone network to alleviate the problems of high noise and detail blur caused by low illumination with very few parameter costs. In the feature fusion part, aiming to improve the detection performance for small objects in UAV aerial images, a shallow feature fusion network and a small object detection head are added. In addition, the adaptive spatial feature fusion structure (ASFF) is also introduced, which adaptively fuses information from different levels of feature maps by optimizing the feature fusion strategy so that the network can more accurately identify and locate objects of various scales. The experimental results show that the mAP50 of LI-YOLO reaches 76.6% on the DroneVehicle dataset and 90.8% on the LLVIP dataset. Compared with other current algorithms, LI-YOLO improves the mAP 50 by 3.1% on the DroneVehicle dataset and 6.9% on the LLVIP dataset. Experimental results show that the proposed algorithm can effectively improve object detection performance in low-illumination scenes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
爆米花应助NL采纳,获得10
刚刚
俏皮道之完成签到,获得积分10
1秒前
1秒前
晨曦发布了新的文献求助10
2秒前
旺仔完成签到,获得积分20
2秒前
goodc发布了新的文献求助10
2秒前
wwz应助Han采纳,获得10
3秒前
舒桐发布了新的文献求助20
3秒前
张涵晟发布了新的文献求助10
4秒前
畅快的觅风完成签到,获得积分10
4秒前
5秒前
阿米尔完成签到,获得积分10
5秒前
姜jiang完成签到,获得积分10
6秒前
xinluli完成签到,获得积分10
7秒前
洪妹妹完成签到,获得积分10
7秒前
浮游应助12采纳,获得10
7秒前
7秒前
李春普发布了新的文献求助10
7秒前
7秒前
李健的粉丝团团长应助dyc采纳,获得10
8秒前
9秒前
AYEFORBIDER完成签到,获得积分10
9秒前
深情安青应助机智念芹采纳,获得10
9秒前
chenxt发布了新的文献求助10
10秒前
Mona完成签到,获得积分10
10秒前
蓝颜完成签到,获得积分10
10秒前
人福药业完成签到,获得积分10
11秒前
有钱完成签到,获得积分10
12秒前
liuch完成签到,获得积分20
12秒前
852应助dhn采纳,获得10
12秒前
12秒前
秋蚓完成签到 ,获得积分10
13秒前
上官若男应助满意若烟采纳,获得10
13秒前
NL发布了新的文献求助10
14秒前
huangyi发布了新的文献求助10
14秒前
刘子迪完成签到 ,获得积分10
14秒前
14秒前
完美世界应助旺仔采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5283704
求助须知:如何正确求助?哪些是违规求助? 4437469
关于积分的说明 13813675
捐赠科研通 4318220
什么是DOI,文献DOI怎么找? 2370348
邀请新用户注册赠送积分活动 1365683
关于科研通互助平台的介绍 1329143