亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

LI-YOLO: An Object Detection Algorithm for UAV Aerial Images in Low-Illumination Scenes

计算机视觉 人工智能 计算机科学 目标检测 对象(语法) 航拍照片 航空影像 计算机图形学(图像) 遥感 地理 模式识别(心理学) 图像(数学)
作者
Shouyuan Liu,Hao He,Zhichao Zhang,Yatong Zhou
出处
期刊:Drones [Multidisciplinary Digital Publishing Institute]
卷期号:8 (11): 653-653
标识
DOI:10.3390/drones8110653
摘要

With the development of unmanned aerial vehicle (UAV) technology, deep learning is becoming more and more widely used in object detection in UAV aerial images; however, detecting and identifying small objects in low-illumination scenes is still a major challenge. Aiming at the problem of low brightness, high noise, and obscure details of low-illumination images, an object detection algorithm, LI-YOLO (Low-Illumination You Only Look Once), for UAV aerial images in low-illumination scenes is proposed. Specifically, in the feature extraction section, this paper proposes a feature enhancement block (FEB) to realize global receptive field and context information learning through lightweight operations and embeds it into the C2f module at the end of the backbone network to alleviate the problems of high noise and detail blur caused by low illumination with very few parameter costs. In the feature fusion part, aiming to improve the detection performance for small objects in UAV aerial images, a shallow feature fusion network and a small object detection head are added. In addition, the adaptive spatial feature fusion structure (ASFF) is also introduced, which adaptively fuses information from different levels of feature maps by optimizing the feature fusion strategy so that the network can more accurately identify and locate objects of various scales. The experimental results show that the mAP50 of LI-YOLO reaches 76.6% on the DroneVehicle dataset and 90.8% on the LLVIP dataset. Compared with other current algorithms, LI-YOLO improves the mAP 50 by 3.1% on the DroneVehicle dataset and 6.9% on the LLVIP dataset. Experimental results show that the proposed algorithm can effectively improve object detection performance in low-illumination scenes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Koala04完成签到,获得积分10
12秒前
16秒前
cy0824完成签到 ,获得积分10
18秒前
飞快的孱发布了新的文献求助10
22秒前
45秒前
jitianxing发布了新的文献求助10
51秒前
1分钟前
1分钟前
科研通AI5应助jitianxing采纳,获得10
3分钟前
我是老大应助科研通管家采纳,获得10
3分钟前
forest完成签到,获得积分10
4分钟前
4分钟前
jitianxing发布了新的文献求助10
4分钟前
vbnn完成签到 ,获得积分10
4分钟前
冷傲半邪完成签到,获得积分10
4分钟前
无幻完成签到 ,获得积分10
4分钟前
松松完成签到 ,获得积分10
5分钟前
5分钟前
CES_SH完成签到,获得积分10
5分钟前
数乱了梨花完成签到 ,获得积分0
5分钟前
已知中的未知完成签到 ,获得积分10
5分钟前
5分钟前
袁梦发布了新的文献求助10
6分钟前
科研通AI6应助袁梦采纳,获得10
6分钟前
上官若男应助马良采纳,获得10
6分钟前
贰鸟完成签到,获得积分0
6分钟前
6分钟前
科研通AI5应助jitianxing采纳,获得10
6分钟前
马良发布了新的文献求助10
6分钟前
7分钟前
花落无声完成签到 ,获得积分10
7分钟前
jitianxing发布了新的文献求助10
7分钟前
jitianxing完成签到,获得积分20
7分钟前
科目三应助科研通管家采纳,获得10
7分钟前
科研通AI5应助jitianxing采纳,获得10
7分钟前
沉默白桃完成签到 ,获得积分10
8分钟前
感动清炎完成签到,获得积分10
8分钟前
Ava应助oleskarabach采纳,获得10
9分钟前
10分钟前
领导范儿应助gszy1975采纳,获得10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582451
求助须知:如何正确求助?哪些是违规求助? 4000198
关于积分的说明 12382246
捐赠科研通 3675167
什么是DOI,文献DOI怎么找? 2025731
邀请新用户注册赠送积分活动 1059367
科研通“疑难数据库(出版商)”最低求助积分说明 946069