已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

LI-YOLO: An Object Detection Algorithm for UAV Aerial Images in Low-Illumination Scenes

计算机视觉 人工智能 计算机科学 目标检测 对象(语法) 航拍照片 航空影像 计算机图形学(图像) 遥感 地理 模式识别(心理学) 图像(数学)
作者
Shouyuan Liu,Hao He,Zhichao Zhang,Yatong Zhou
出处
期刊:Drones [Multidisciplinary Digital Publishing Institute]
卷期号:8 (11): 653-653
标识
DOI:10.3390/drones8110653
摘要

With the development of unmanned aerial vehicle (UAV) technology, deep learning is becoming more and more widely used in object detection in UAV aerial images; however, detecting and identifying small objects in low-illumination scenes is still a major challenge. Aiming at the problem of low brightness, high noise, and obscure details of low-illumination images, an object detection algorithm, LI-YOLO (Low-Illumination You Only Look Once), for UAV aerial images in low-illumination scenes is proposed. Specifically, in the feature extraction section, this paper proposes a feature enhancement block (FEB) to realize global receptive field and context information learning through lightweight operations and embeds it into the C2f module at the end of the backbone network to alleviate the problems of high noise and detail blur caused by low illumination with very few parameter costs. In the feature fusion part, aiming to improve the detection performance for small objects in UAV aerial images, a shallow feature fusion network and a small object detection head are added. In addition, the adaptive spatial feature fusion structure (ASFF) is also introduced, which adaptively fuses information from different levels of feature maps by optimizing the feature fusion strategy so that the network can more accurately identify and locate objects of various scales. The experimental results show that the mAP50 of LI-YOLO reaches 76.6% on the DroneVehicle dataset and 90.8% on the LLVIP dataset. Compared with other current algorithms, LI-YOLO improves the mAP 50 by 3.1% on the DroneVehicle dataset and 6.9% on the LLVIP dataset. Experimental results show that the proposed algorithm can effectively improve object detection performance in low-illumination scenes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助nikki采纳,获得20
1秒前
4秒前
曾经如是完成签到,获得积分10
4秒前
jimmy完成签到,获得积分10
4秒前
6秒前
李梦如完成签到,获得积分20
6秒前
8秒前
舒适的一凤完成签到 ,获得积分10
8秒前
Orange应助何何何何何采纳,获得10
9秒前
9秒前
9秒前
希望天下0贩的0应助诺一44采纳,获得10
9秒前
9秒前
11秒前
jimmy发布了新的文献求助10
12秒前
陈梅红完成签到 ,获得积分10
13秒前
momo123完成签到 ,获得积分10
13秒前
14秒前
梨小7完成签到,获得积分10
15秒前
赘婿应助早晚炸了学校采纳,获得10
16秒前
16秒前
17秒前
张张完成签到,获得积分10
18秒前
Adzuki0812发布了新的文献求助30
19秒前
言论完成签到,获得积分10
21秒前
22秒前
23秒前
爱笑小笼包完成签到,获得积分10
23秒前
GaoChenxi完成签到 ,获得积分10
24秒前
李健的小迷弟应助张之静采纳,获得10
25秒前
FashionBoy应助吉他平方采纳,获得10
26秒前
26秒前
27秒前
CrazyLion完成签到,获得积分10
28秒前
科目三应助李梦如采纳,获得10
28秒前
米饭多加水完成签到,获得积分10
28秒前
29秒前
30秒前
nikki完成签到,获得积分10
31秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934509
求助须知:如何正确求助?哪些是违规求助? 4202404
关于积分的说明 13057258
捐赠科研通 3976729
什么是DOI,文献DOI怎么找? 2179167
邀请新用户注册赠送积分活动 1195395
关于科研通互助平台的介绍 1106744