A Hierarchical Feature Extraction and Multimodal Deep Feature Integration-Based Model for Autism Spectrum Disorder Identification

特征提取 计算机科学 特征(语言学) 鉴定(生物学) 人工智能 自闭症谱系障碍 自闭症 模式识别(心理学) 医学 哲学 语言学 植物 精神科 生物
作者
Jingjing Gao,Sutao Song
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/jbhi.2025.3540894
摘要

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder, and precise prediction using imaging or other biological information is of great significance. However, predicting ASD in individuals presents the following challenges: first, there is extensive heterogeneity among subjects; second, existing models fail to fully utilize rs-fMRI and non-imaging information, resulting in less accurate classification results. Therefore, this paper proposes a novel framework, named HE-MF, which consists of a Hierarchical Feature Extraction Module and a Multimodal Deep Feature Integration Module. The Hierarchical Feature Extraction Module aims to achieve multi-level, fine-grained feature extraction and enhance the model's discriminative ability by progressively extracting the most discriminative functional connectivity features at both the intra-group and overall subject levels. The Multimodal Deep Integration Module extracts common and distinctive features based on rs-fMRI and non-imaging information through two separate channels, and utilizes an attention mechanism for dynamic weight allocation, thereby achieving deep feature fusion and significantly improving the model's predictive performance. Experimental results on the ABIDE public dataset show that the HE-MF model achieves an accuracy of 95.17% in the ASD identification task, significantly outperforming existing state-of-the-art methods, demonstrating its effectiveness and superiority. To verify the model's generalization capability, we successfully applied it to relevant tasks in the ADNI dataset, further demonstrating the HE-MF model's outstanding performance in feature learning and generalization capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐的一刀完成签到,获得积分10
刚刚
rosalieshi应助秋水揽星河采纳,获得100
刚刚
1秒前
早日毕业发布了新的文献求助30
2秒前
2秒前
呆萌的忆彤完成签到,获得积分10
2秒前
英姑应助陈橙采纳,获得10
2秒前
3秒前
hy完成签到,获得积分10
4秒前
5秒前
cicy应助冷静新烟采纳,获得30
6秒前
沉静小蚂蚁完成签到,获得积分10
6秒前
士艳完成签到,获得积分10
7秒前
tang完成签到,获得积分10
7秒前
Kuzu完成签到,获得积分10
7秒前
科研通AI5应助qun采纳,获得10
8秒前
李健的小迷弟应助小咖张采纳,获得10
8秒前
行者无疆发布了新的文献求助10
9秒前
lllkkk完成签到,获得积分10
9秒前
10秒前
听寒发布了新的文献求助150
11秒前
11秒前
Xixi元气满满鸭完成签到,获得积分10
13秒前
Smartan应助haimianbaobao采纳,获得10
13秒前
科研通AI5应助个性松采纳,获得10
13秒前
研友_VZG7GZ应助123采纳,获得10
13秒前
14秒前
14秒前
提拉米苏发布了新的文献求助10
15秒前
莫铭发布了新的文献求助10
15秒前
hfhkjh完成签到,获得积分10
15秒前
wpj发布了新的文献求助10
17秒前
17秒前
18秒前
19秒前
19秒前
20秒前
Ni发布了新的文献求助10
20秒前
21秒前
不爱学习完成签到,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540600
求助须知:如何正确求助?哪些是违规求助? 3117879
关于积分的说明 9332947
捐赠科研通 2815724
什么是DOI,文献DOI怎么找? 1547709
邀请新用户注册赠送积分活动 721130
科研通“疑难数据库(出版商)”最低求助积分说明 712481