An Improved Algorithm for Small Target Detection based on YOLO

计算机科学 算法
作者
Hao Meng,Jieqing Tan
标识
DOI:10.54097/e6sq4903
摘要

Aiming at the problems of small target size, dense target, missing detection and false detection in UAV aerial images, an improved YOLOv8s small target detection algorithm MS-P2-YOLO is proposed in this paper. First, through several initial convolution layers, the composite convolution module extracts the target feature information, and uses pooling operations of different scales to capture the global context information of the image. Then, the scale adaptive fusion unit module is used to scale and splicing the feature map in a certain form to integrate the feature information from different scales or layers. Then the multi-dimensional feature integration module is used to adjust the features according to the size or number of channels of the input feature map, and to enhance the feature representation through certain forms of scaling and sequence processing. At the same time, P2 detection head is added at the end to further increase the detection ability of small targets, which greatly improves the problems of missing detection, false detection and large number of parameters of small targets. Experiments show that compared with the VisDrone2019 dataset of MS-P2-YOLO and YOLOv8s, P, R and mAP50% have increased by 9%, 12.9% and 12.9% respectively, and the number of parameters has decreased by 4%. At the same time, generalization and comparison experiments were also conducted in YOLOv5s, YOLOv8s, ATSS, TOOD, and Father-RCNN, and the detection results were visualized. The experiments showed that all parameters were improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kepwake完成签到,获得积分10
刚刚
英姑应助WESTBROOK采纳,获得10
1秒前
靓丽的发箍完成签到,获得积分10
1秒前
luwanqing完成签到,获得积分10
2秒前
捏鱼完成签到,获得积分20
3秒前
独孤幻月96应助来日方长采纳,获得10
3秒前
威武鸽子完成签到,获得积分10
4秒前
tiantu发布了新的文献求助10
4秒前
5秒前
guoguo完成签到 ,获得积分10
5秒前
科研通AI5应助cyf采纳,获得10
6秒前
大模型应助Zzz呀采纳,获得10
6秒前
6秒前
呆萌的u完成签到,获得积分10
7秒前
xx应助秦善斓采纳,获得10
7秒前
7秒前
7秒前
7秒前
xima完成签到 ,获得积分10
8秒前
8秒前
搬砖民工完成签到,获得积分10
8秒前
芥丶子发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
喵喵拳发布了新的文献求助20
9秒前
Cactus应助张张采纳,获得10
9秒前
借两颗星星完成签到,获得积分10
9秒前
tian完成签到,获得积分10
9秒前
梦蝴蝶发布了新的文献求助10
10秒前
健壮荠完成签到,获得积分10
10秒前
Emma施施完成签到,获得积分10
10秒前
文艺代灵完成签到,获得积分10
10秒前
游悠悠完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
自觉的秋蝶完成签到,获得积分10
12秒前
123发布了新的文献求助10
12秒前
咿呀完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4614581
求助须知:如何正确求助?哪些是违规求助? 4018748
关于积分的说明 12439646
捐赠科研通 3701503
什么是DOI,文献DOI怎么找? 2041241
邀请新用户注册赠送积分活动 1073983
科研通“疑难数据库(出版商)”最低求助积分说明 957639