An Improved Algorithm for Small Target Detection based on YOLO

计算机科学 算法
作者
Hao Meng,Jieqing Tan
标识
DOI:10.54097/e6sq4903
摘要

Aiming at the problems of small target size, dense target, missing detection and false detection in UAV aerial images, an improved YOLOv8s small target detection algorithm MS-P2-YOLO is proposed in this paper. First, through several initial convolution layers, the composite convolution module extracts the target feature information, and uses pooling operations of different scales to capture the global context information of the image. Then, the scale adaptive fusion unit module is used to scale and splicing the feature map in a certain form to integrate the feature information from different scales or layers. Then the multi-dimensional feature integration module is used to adjust the features according to the size or number of channels of the input feature map, and to enhance the feature representation through certain forms of scaling and sequence processing. At the same time, P2 detection head is added at the end to further increase the detection ability of small targets, which greatly improves the problems of missing detection, false detection and large number of parameters of small targets. Experiments show that compared with the VisDrone2019 dataset of MS-P2-YOLO and YOLOv8s, P, R and mAP50% have increased by 9%, 12.9% and 12.9% respectively, and the number of parameters has decreased by 4%. At the same time, generalization and comparison experiments were also conducted in YOLOv5s, YOLOv8s, ATSS, TOOD, and Father-RCNN, and the detection results were visualized. The experiments showed that all parameters were improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不要加糖发布了新的文献求助10
刚刚
刚刚
大个应助雷寒云采纳,获得10
1秒前
albertxin发布了新的文献求助10
1秒前
特西之魂关注了科研通微信公众号
1秒前
852应助djbj2022采纳,获得10
2秒前
2秒前
Xieyusen发布了新的文献求助20
4秒前
Y0Y0完成签到 ,获得积分10
4秒前
5秒前
5秒前
如意2023发布了新的文献求助10
5秒前
酷波er应助在我梦里绕采纳,获得10
6秒前
Youatpome发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
马甲完成签到,获得积分10
8秒前
8秒前
peiter发布了新的文献求助10
8秒前
小黄发布了新的文献求助10
10秒前
f0rest发布了新的文献求助10
11秒前
11秒前
Ilan发布了新的文献求助10
12秒前
枫七完成签到,获得积分10
12秒前
dd发布了新的文献求助10
12秒前
pharma发布了新的文献求助10
14秒前
酷波er应助不要加糖采纳,获得10
15秒前
完美世界应助悦耳人生采纳,获得10
15秒前
17秒前
小羊完成签到,获得积分10
17秒前
赘婿应助研友_Z1WrgL采纳,获得10
17秒前
17完成签到,获得积分10
18秒前
wangzh发布了新的文献求助10
18秒前
所所应助机灵水卉采纳,获得10
18秒前
所所应助zou采纳,获得10
18秒前
慕青应助linmo采纳,获得10
20秒前
快乐秋白完成签到,获得积分10
21秒前
CodeCraft应助YING采纳,获得10
22秒前
Jeffery完成签到,获得积分10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967699
求助须知:如何正确求助?哪些是违规求助? 3512860
关于积分的说明 11165281
捐赠科研通 3247897
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804550