An Improved Algorithm for Small Target Detection based on YOLO

计算机科学 算法
作者
Hao Meng,Jieqing Tan
标识
DOI:10.54097/e6sq4903
摘要

Aiming at the problems of small target size, dense target, missing detection and false detection in UAV aerial images, an improved YOLOv8s small target detection algorithm MS-P2-YOLO is proposed in this paper. First, through several initial convolution layers, the composite convolution module extracts the target feature information, and uses pooling operations of different scales to capture the global context information of the image. Then, the scale adaptive fusion unit module is used to scale and splicing the feature map in a certain form to integrate the feature information from different scales or layers. Then the multi-dimensional feature integration module is used to adjust the features according to the size or number of channels of the input feature map, and to enhance the feature representation through certain forms of scaling and sequence processing. At the same time, P2 detection head is added at the end to further increase the detection ability of small targets, which greatly improves the problems of missing detection, false detection and large number of parameters of small targets. Experiments show that compared with the VisDrone2019 dataset of MS-P2-YOLO and YOLOv8s, P, R and mAP50% have increased by 9%, 12.9% and 12.9% respectively, and the number of parameters has decreased by 4%. At the same time, generalization and comparison experiments were also conducted in YOLOv5s, YOLOv8s, ATSS, TOOD, and Father-RCNN, and the detection results were visualized. The experiments showed that all parameters were improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
唠叨的曼雁发布了新的文献求助100
3秒前
HongWei完成签到,获得积分10
5秒前
5秒前
Lee完成签到,获得积分10
5秒前
找回自己完成签到,获得积分10
6秒前
烟花应助发疯的游子采纳,获得10
6秒前
斯文败类应助只想睡大觉采纳,获得10
11秒前
Chenqzl发布了新的文献求助10
12秒前
13秒前
cxhznb完成签到,获得积分10
13秒前
拼搏的萧完成签到 ,获得积分10
13秒前
13秒前
汪少侠完成签到,获得积分10
15秒前
15秒前
Flyzhang完成签到,获得积分10
15秒前
15秒前
小猪猪饲养员完成签到,获得积分10
17秒前
良药苦口完成签到,获得积分10
18秒前
18秒前
科目三应助AYAHEI采纳,获得10
21秒前
菲菲发布了新的文献求助10
22秒前
spike完成签到,获得积分10
23秒前
26秒前
26秒前
26秒前
27秒前
沃研完成签到 ,获得积分10
27秒前
沉静茗发布了新的文献求助30
28秒前
帅气的乘云完成签到,获得积分10
30秒前
哩哩哩发布了新的文献求助10
30秒前
开心绿柳完成签到,获得积分10
30秒前
changfox完成签到,获得积分10
31秒前
yuery发布了新的文献求助10
31秒前
31秒前
大模型应助spike采纳,获得10
32秒前
33秒前
34秒前
zhangni发布了新的文献求助10
34秒前
34秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461359
求助须知:如何正确求助?哪些是违规求助? 3055047
关于积分的说明 9046247
捐赠科研通 2744983
什么是DOI,文献DOI怎么找? 1505792
科研通“疑难数据库(出版商)”最低求助积分说明 695820
邀请新用户注册赠送积分活动 695264