An Improved Algorithm for Small Target Detection based on YOLO

计算机科学 算法
作者
Hao Meng,Jieqing Tan
标识
DOI:10.54097/e6sq4903
摘要

Aiming at the problems of small target size, dense target, missing detection and false detection in UAV aerial images, an improved YOLOv8s small target detection algorithm MS-P2-YOLO is proposed in this paper. First, through several initial convolution layers, the composite convolution module extracts the target feature information, and uses pooling operations of different scales to capture the global context information of the image. Then, the scale adaptive fusion unit module is used to scale and splicing the feature map in a certain form to integrate the feature information from different scales or layers. Then the multi-dimensional feature integration module is used to adjust the features according to the size or number of channels of the input feature map, and to enhance the feature representation through certain forms of scaling and sequence processing. At the same time, P2 detection head is added at the end to further increase the detection ability of small targets, which greatly improves the problems of missing detection, false detection and large number of parameters of small targets. Experiments show that compared with the VisDrone2019 dataset of MS-P2-YOLO and YOLOv8s, P, R and mAP50% have increased by 9%, 12.9% and 12.9% respectively, and the number of parameters has decreased by 4%. At the same time, generalization and comparison experiments were also conducted in YOLOv5s, YOLOv8s, ATSS, TOOD, and Father-RCNN, and the detection results were visualized. The experiments showed that all parameters were improved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐真完成签到,获得积分10
刚刚
1秒前
D调的华丽完成签到,获得积分10
1秒前
XX发布了新的文献求助10
1秒前
成就凡双应助STP顶峰相见采纳,获得20
1秒前
2秒前
Cassiopiea19发布了新的文献求助10
2秒前
儒雅非笑发布了新的文献求助10
2秒前
2秒前
三寸光阴完成签到,获得积分10
3秒前
4秒前
知然完成签到,获得积分20
4秒前
somajason完成签到,获得积分10
4秒前
任性的岱周完成签到,获得积分10
4秒前
4秒前
sun完成签到,获得积分10
5秒前
H丶化羽发布了新的文献求助10
5秒前
月是故乡明完成签到,获得积分10
5秒前
小毛豆发布了新的文献求助50
5秒前
量子星尘发布了新的文献求助10
5秒前
cc完成签到,获得积分10
6秒前
BaiX发布了新的文献求助10
6秒前
淡然钢铁侠完成签到,获得积分10
6秒前
Yamila完成签到,获得积分10
6秒前
少年应助MNing采纳,获得10
6秒前
隐形曼青应助mei采纳,获得10
6秒前
六便士发布了新的文献求助10
7秒前
dspan发布了新的文献求助10
7秒前
王欣完成签到 ,获得积分10
7秒前
hdd完成签到,获得积分10
7秒前
谷中青完成签到,获得积分10
7秒前
传奇3应助顺利毕业采纳,获得10
7秒前
8秒前
8秒前
墨扬完成签到,获得积分10
8秒前
乐一李完成签到 ,获得积分10
9秒前
JMrider完成签到,获得积分10
9秒前
小居同学完成签到,获得积分10
9秒前
温暖的寻雪完成签到 ,获得积分10
10秒前
chruse发布了新的文献求助10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698917
求助须知:如何正确求助?哪些是违规求助? 5127463
关于积分的说明 15223160
捐赠科研通 4853889
什么是DOI,文献DOI怎么找? 2604380
邀请新用户注册赠送积分活动 1555868
关于科研通互助平台的介绍 1514197