Genetically Predicted Plasma Metabolome Mediates the Causal Link Between Immune Cells and Risk of Gout

代谢组 免疫系统 痛风 孟德尔随机化 医学 代谢组学 因果推理 生物信息学 免疫学 内科学 生物 遗传学 病理 基因 遗传变异 基因型
作者
Yi Wei,Jiangyi Yu
出处
期刊:International Journal of Rheumatic Diseases [Wiley]
卷期号:28 (2)
标识
DOI:10.1111/1756-185x.70094
摘要

ABSTRACT Background Gout is a prevalent metabolic disorder characterized by a multifaceted process of development. Recent research has emphasized a robust correlation between the immune response and gout. Nevertheless, it is still uncertain if this connection is causative. Hence, the objective of this study was to investigate the causal relationship between immune cells and gout, while also analyzing the role of the plasma metabolome as metabolic mediators in this biological process. Methods This study explored the causal link between different subtypes of immune cells and gout using two‐sample Mendelian randomization (MR). To confirm the reliability of the findings, reverse MR analysis, steiger test and sensitivity tests were conducted. A two‐step mediation analysis was used to gain insight into the role of plasma metabolites as intermediate mediators. Results This two‐sample, bidirectional, two‐step MR analysis found a nominal causal link between 33 immune cells as well as 47 known plasma metabolites and gout. Reverse MR analysis and sensitivity tests demonstrated the reliability of the MR results. In addition, we found that Tetradecadienedioate (C14:2‐DC) played a partially mediating role in the CD4 on activated CD4 regulatory T cell and gout pathways, with a mediating proportion of 13.16%, (95% CI = 0.65%–25.67%, p = 0.034). Conclusion The objective of our research was to investigate the possible causative connection between immune cells and gout. Our findings indicate that certain plasma metabolites may play a role in mediating this association. This study offers novel insights and sources of information that may contribute to the early detection and proactive measures to avoid gout in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幸福大白发布了新的文献求助10
刚刚
zhttty完成签到,获得积分10
刚刚
1秒前
Zn应助wd采纳,获得10
2秒前
不爱吃姜发布了新的文献求助10
2秒前
2秒前
bcc完成签到,获得积分10
2秒前
知性的土豆完成签到,获得积分10
3秒前
华仔应助li采纳,获得10
3秒前
3秒前
4秒前
4秒前
思源应助2401采纳,获得10
4秒前
Qi发布了新的文献求助10
4秒前
lc发布了新的文献求助10
5秒前
5秒前
Owen应助斯文稚晴采纳,获得10
5秒前
YANG发布了新的文献求助10
6秒前
DDDDD完成签到,获得积分10
6秒前
6秒前
7秒前
黑暗系发布了新的文献求助10
7秒前
JY发布了新的文献求助10
8秒前
9秒前
科研通AI5应助贺万万采纳,获得10
9秒前
大模型应助ZHIXIANGWENG采纳,获得10
10秒前
CipherSage应助ZHIXIANGWENG采纳,获得10
10秒前
orixero应助ZHIXIANGWENG采纳,获得10
10秒前
CipherSage应助ZHIXIANGWENG采纳,获得10
10秒前
科研通AI5应助大禹治果汁采纳,获得10
11秒前
取法乎上发布了新的文献求助10
11秒前
附姜完成签到,获得积分10
11秒前
LUO发布了新的文献求助10
11秒前
阳光冷雪发布了新的文献求助10
12秒前
yunyunya发布了新的文献求助10
13秒前
yasu发布了新的文献求助10
13秒前
14秒前
科目三应助july7292采纳,获得10
14秒前
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543600
求助须知:如何正确求助?哪些是违规求助? 3120949
关于积分的说明 9344906
捐赠科研通 2818967
什么是DOI,文献DOI怎么找? 1549876
邀请新用户注册赠送积分活动 722316
科研通“疑难数据库(出版商)”最低求助积分说明 713126