Preprocessing and Denoising Techniques for Electrocardiography and Magnetocardiography: A Review

降噪 心磁图 计算机科学 预处理器 人工智能 噪音(视频) 信号处理 模式识别(心理学) 机器学习 数字信号处理 医学 心脏病学 计算机硬件 图像(数学)
作者
Yifan Jia,Hongyu Pei,Jiaqi Liang,Yuheng Zhou,Yanfei Yang,Yangyang Cui,Min Xiang
出处
期刊:Bioengineering [Multidisciplinary Digital Publishing Institute]
卷期号:11 (11): 1109-1109
标识
DOI:10.3390/bioengineering11111109
摘要

This review systematically analyzes the latest advancements in preprocessing techniques for Electrocardiography (ECG) and Magnetocardiography (MCG) signals over the past decade. ECG and MCG play crucial roles in cardiovascular disease (CVD) detection, but both are susceptible to noise interference. This paper categorizes and compares different ECG denoising methods based on noise types, such as baseline wander (BW), electromyographic noise (EMG), power line interference (PLI), and composite noise. It also examines the complexity of MCG signal denoising, highlighting the challenges posed by environmental and instrumental interference. This review is the first to systematically compare the characteristics of ECG and MCG signals, emphasizing their complementary nature. MCG holds significant potential for improving the precision of CVD clinical diagnosis. Additionally, it evaluates the limitations of current denoising methods in clinical applications and outlines future directions, including the potential of explainable neural networks, multi-task neural networks, and the combination of deep learning with traditional methods to enhance denoising performance and diagnostic accuracy. In summary, while traditional filtering techniques remain relevant, hybrid strategies combining machine learning offer substantial potential for advancing signal processing and clinical diagnostics. This review contributes to the field by providing a comprehensive framework for selecting and improving denoising techniques, better facilitating signal quality enhancement and the accuracy of CVD diagnostics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
神光发布了新的文献求助10
3秒前
SciGPT应助秋海棠采纳,获得10
3秒前
zho发布了新的文献求助10
4秒前
赘婿应助景笑天采纳,获得10
10秒前
NexusExplorer应助网再快点采纳,获得10
14秒前
15秒前
棉花糖完成签到,获得积分20
17秒前
chiyu完成签到,获得积分10
17秒前
cdercder应助资白玉采纳,获得10
18秒前
blawxx完成签到,获得积分10
19秒前
20秒前
Narcissus完成签到,获得积分10
21秒前
kinzer发布了新的文献求助10
21秒前
22秒前
Yuan发布了新的文献求助10
22秒前
紫电青霜完成签到,获得积分10
24秒前
科研通AI2S应助积极的睫毛采纳,获得10
25秒前
ceeray23应助yan采纳,获得10
25秒前
26秒前
shepherd发布了新的文献求助60
28秒前
小巧的傲松完成签到,获得积分10
28秒前
网再快点发布了新的文献求助10
30秒前
万能图书馆应助梦幻采纳,获得10
30秒前
研友_VZG7GZ应助CATH采纳,获得10
30秒前
完美世界应助科研通管家采纳,获得10
31秒前
Akim应助科研通管家采纳,获得10
31秒前
Auston_zhong应助科研通管家采纳,获得10
31秒前
大个应助科研通管家采纳,获得10
31秒前
领导范儿应助科研通管家采纳,获得10
31秒前
Auston_zhong应助科研通管家采纳,获得10
31秒前
图图应助科研通管家采纳,获得30
31秒前
斯文败类应助科研通管家采纳,获得10
31秒前
科研通AI5应助迷路的煎蛋采纳,获得10
37秒前
Jasper应助李Li采纳,获得10
39秒前
42秒前
yao chen完成签到,获得积分10
42秒前
上官若男应助迷路的手机采纳,获得10
42秒前
Akim应助liv采纳,获得10
43秒前
璐宝完成签到,获得积分10
44秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737385
求助须知:如何正确求助?哪些是违规求助? 3281209
关于积分的说明 10023728
捐赠科研通 2997939
什么是DOI,文献DOI怎么找? 1644880
邀请新用户注册赠送积分活动 782304
科研通“疑难数据库(出版商)”最低求助积分说明 749762