亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Contrastive learning-enabled digital twin framework for fault diagnosis of rolling bearing

方位(导航) 断层(地质) 计算机科学 生育子女 人工智能 地质学 地震学 医学 人口 环境卫生
作者
Yongchao Zhang,Xin Zhou,Cheng Gao,Jiadai Lin,Zhaohui Ren,Ke Feng
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 015026-015026 被引量:11
标识
DOI:10.1088/1361-6501/ad8f52
摘要

Abstract Rolling bearings are essential components in various industrial machines, and their failures can lead to significant downtime and maintenance costs. Traditional data-driven fault diagnosis methods often require extensive fault datasets for training, which may not always be available in critical industrial scenarios, limiting their practicality. Digital twins, virtual representations of physical entities reflecting their operational conditions, offer a promising solution for the fault diagnosis of rolling bearings with limited fault data. In this paper, we propose a novel digital twin-driven framework to address the challenge of limited training data in rolling bearing fault diagnosis. Firstly, a virtual bearing simulation model is used to generate the simulated data. Subsequently, a transformer-based network is introduced to learn the discrepancy features from the raw data. Then, a maximum mean discrepancy loss and a supervised contrastive learning loss for raw and augmentation data are established to achieve global domain alignment and instance-based domain alignment. Finally, an unsupervised contrastive learning loss for the augmentation data of the target domain is established to further improve the diagnostic performance. In five cross-domain fault diagnosis tasks representing real industrial scenarios set, the average diagnostic accuracy of the proposed method is 84.39%, which is more than 10% higher than the two existing advanced domain adaptation methods. The experimental results demonstrate that the proposed method achieves high diagnostic performance in real industrial scenarios where labeled data is lacking. This shows its significant benefits for monitoring the condition of critical bearings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FMHChan完成签到,获得积分10
39秒前
cy0824完成签到 ,获得积分10
55秒前
wodetaiyangLLL完成签到 ,获得积分10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
1分钟前
铭铭完成签到 ,获得积分10
2分钟前
FashionBoy应助科研通管家采纳,获得10
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
Attaa完成签到,获得积分10
5分钟前
5分钟前
木木发布了新的文献求助10
5分钟前
5分钟前
5分钟前
gexzygg应助科研通管家采纳,获得10
5分钟前
gexzygg应助科研通管家采纳,获得10
5分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
gexzygg应助科研通管家采纳,获得10
5分钟前
6分钟前
科研通AI6应助年轻的雁露采纳,获得30
6分钟前
6分钟前
BowieHuang应助冷酷的寒天采纳,获得10
6分钟前
6分钟前
嘟嘟嘟嘟发布了新的文献求助10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
shhoing应助科研通管家采纳,获得10
7分钟前
天真台灯完成签到 ,获得积分10
8分钟前
shhoing应助科研通管家采纳,获得10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
gexzygg应助科研通管家采纳,获得10
9分钟前
风趣小小完成签到,获得积分10
10分钟前
完美世界应助cenghao采纳,获得10
11分钟前
易水完成签到 ,获得积分10
11分钟前
11分钟前
爆米花应助科研通管家采纳,获得10
11分钟前
shhoing应助科研通管家采纳,获得10
11分钟前
gexzygg应助科研通管家采纳,获得10
11分钟前
cenghao发布了新的文献求助10
11分钟前
湘崽丫完成签到 ,获得积分10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561520
求助须知:如何正确求助?哪些是违规求助? 4646630
关于积分的说明 14678717
捐赠科研通 4587950
什么是DOI,文献DOI怎么找? 2517258
邀请新用户注册赠送积分活动 1490540
关于科研通互助平台的介绍 1461538