Contrastive learning-enabled digital twin framework for fault diagnosis of rolling bearing

方位(导航) 断层(地质) 计算机科学 生育子女 人工智能 地质学 地震学 医学 人口 环境卫生
作者
Yongchao Zhang,Xin Zhou,Cheng Gao,Jiadai Lin,Zhaohui Ren,Ke Feng
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad8f52
摘要

Abstract Rolling bearings are essential components in various industrial machines, and their failures can lead to significant downtime and maintenance costs. Traditional data-driven fault diagnosis methods often require extensive fault datasets for training, which may not always be available in critical industrial scenarios, limiting their practicality. Digital twins, virtual representations of physical entities reflecting their operational conditions, offer a promising solution for the fault diagnosis of rolling bearings with limited fault data. In this paper, we propose a novel digital twin-driven framework to address the challenge of limited training data in rolling bearing fault diagnosis. Firstly, a virtual bearing simulation model is used to generate the simulated data. Subsequently, a transformer-based network is introduced to learn the discrepancy features from the raw data. Then, a Maximum Mean Discrepancy loss and a supervised contrastive learning loss for raw and augmentation data are established to achieve global domain alignment and instance-based domain alignment. Finally, an unsupervised contrastive learning loss for the augmentation data of the target domain is established to further improve the diagnostic performance. In five cross-domain fault diagnosis tasks representing real industrial scenarios set in this study, the proposed method achieved an average diagnostic accuracy of 84.40%, exceeding two existing advanced domain adaptation methods by more than 10%. The experimental results demonstrate that the proposed method achieves high diagnostic performance in real industrial scenarios where labeled data is lacking. This shows its significant benefits for monitoring the condition of critical bearings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
linbei完成签到,获得积分10
刚刚
1秒前
1秒前
3秒前
刘晓倩发布了新的文献求助10
3秒前
沉默冬易完成签到,获得积分10
4秒前
yzlsci完成签到,获得积分0
5秒前
clove发布了新的文献求助10
5秒前
阿泽发布了新的文献求助30
6秒前
谷粱寒烟发布了新的文献求助10
6秒前
江璃发布了新的文献求助10
7秒前
8秒前
研友_8DWkVZ完成签到,获得积分10
10秒前
光亮又晴完成签到 ,获得积分10
13秒前
15秒前
Sherme发布了新的文献求助10
15秒前
delta发布了新的文献求助10
16秒前
16秒前
阿泽完成签到,获得积分10
16秒前
传奇3应助爱笑的万天采纳,获得10
19秒前
入秋的杰尼龟完成签到,获得积分10
19秒前
恰饭完成签到,获得积分10
20秒前
Spark发布了新的文献求助10
20秒前
风中听枫发布了新的文献求助10
21秒前
21秒前
Lucas应助阳光小虾米采纳,获得10
25秒前
零零柒完成签到 ,获得积分10
28秒前
30秒前
31秒前
萧西完成签到 ,获得积分10
31秒前
32秒前
乐乐应助990723采纳,获得10
32秒前
zhangxin完成签到,获得积分10
33秒前
Akim应助lyp采纳,获得10
33秒前
nkuwangkai完成签到,获得积分10
34秒前
pl完成签到 ,获得积分10
34秒前
叶孤城发布了新的文献求助10
35秒前
35秒前
刘晓倩完成签到,获得积分20
35秒前
拜无忧发布了新的文献求助10
39秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137545
求助须知:如何正确求助?哪些是违规求助? 2788520
关于积分的说明 7787226
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300083
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023