亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Contrastive learning-enabled digital twin framework for fault diagnosis of rolling bearing

方位(导航) 断层(地质) 计算机科学 生育子女 人工智能 地质学 地震学 医学 人口 环境卫生
作者
Yongchao Zhang,Xin Zhou,Cheng Gao,Jiadai Lin,Zhaohui Ren,Ke Feng
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 015026-015026 被引量:11
标识
DOI:10.1088/1361-6501/ad8f52
摘要

Abstract Rolling bearings are essential components in various industrial machines, and their failures can lead to significant downtime and maintenance costs. Traditional data-driven fault diagnosis methods often require extensive fault datasets for training, which may not always be available in critical industrial scenarios, limiting their practicality. Digital twins, virtual representations of physical entities reflecting their operational conditions, offer a promising solution for the fault diagnosis of rolling bearings with limited fault data. In this paper, we propose a novel digital twin-driven framework to address the challenge of limited training data in rolling bearing fault diagnosis. Firstly, a virtual bearing simulation model is used to generate the simulated data. Subsequently, a transformer-based network is introduced to learn the discrepancy features from the raw data. Then, a maximum mean discrepancy loss and a supervised contrastive learning loss for raw and augmentation data are established to achieve global domain alignment and instance-based domain alignment. Finally, an unsupervised contrastive learning loss for the augmentation data of the target domain is established to further improve the diagnostic performance. In five cross-domain fault diagnosis tasks representing real industrial scenarios set, the average diagnostic accuracy of the proposed method is 84.39%, which is more than 10% higher than the two existing advanced domain adaptation methods. The experimental results demonstrate that the proposed method achieves high diagnostic performance in real industrial scenarios where labeled data is lacking. This shows its significant benefits for monitoring the condition of critical bearings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zjl关闭了zjl文献求助
35秒前
矢思然完成签到,获得积分10
37秒前
zjl发布了新的文献求助20
54秒前
1分钟前
zjl完成签到,获得积分10
1分钟前
狂野的含烟完成签到 ,获得积分10
1分钟前
2分钟前
Kypsi完成签到,获得积分10
2分钟前
2分钟前
zsmj23完成签到 ,获得积分0
2分钟前
PengDai完成签到,获得积分10
2分钟前
活力广缘完成签到,获得积分10
3分钟前
3分钟前
3分钟前
淡然的剑通完成签到 ,获得积分10
3分钟前
麦旋风发布了新的文献求助10
3分钟前
3分钟前
PengDai发布了新的文献求助200
3分钟前
3分钟前
4分钟前
evermore发布了新的文献求助10
4分钟前
4分钟前
优雅雨柏发布了新的文献求助20
5分钟前
5分钟前
hb完成签到,获得积分10
5分钟前
evermore发布了新的文献求助10
5分钟前
李健应助优雅雨柏采纳,获得10
5分钟前
5分钟前
西瓜发布了新的文献求助10
6分钟前
Akim应助杨博士采纳,获得50
6分钟前
6分钟前
斯文败类应助西瓜采纳,获得10
6分钟前
6分钟前
优雅雨柏发布了新的文献求助10
6分钟前
zhang完成签到,获得积分10
6分钟前
7分钟前
CipherSage应助优雅雨柏采纳,获得10
7分钟前
Jayzie完成签到 ,获得积分10
7分钟前
zxcvvbb1001完成签到 ,获得积分10
7分钟前
情怀应助合适的金鑫采纳,获得10
7分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5346581
求助须知:如何正确求助?哪些是违规求助? 4481113
关于积分的说明 13947277
捐赠科研通 4378960
什么是DOI,文献DOI怎么找? 2406134
邀请新用户注册赠送积分活动 1398713
关于科研通互助平台的介绍 1371476