Contrastive learning-enabled digital twin framework for fault diagnosis of rolling bearing

方位(导航) 断层(地质) 计算机科学 生育子女 人工智能 地质学 地震学 医学 人口 环境卫生
作者
Yongchao Zhang,Xin Zhou,Cheng Gao,Jiadai Lin,Zhaohui Ren,Ke Feng
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 015026-015026 被引量:2
标识
DOI:10.1088/1361-6501/ad8f52
摘要

Abstract Rolling bearings are essential components in various industrial machines, and their failures can lead to significant downtime and maintenance costs. Traditional data-driven fault diagnosis methods often require extensive fault datasets for training, which may not always be available in critical industrial scenarios, limiting their practicality. Digital twins, virtual representations of physical entities reflecting their operational conditions, offer a promising solution for the fault diagnosis of rolling bearings with limited fault data. In this paper, we propose a novel digital twin-driven framework to address the challenge of limited training data in rolling bearing fault diagnosis. Firstly, a virtual bearing simulation model is used to generate the simulated data. Subsequently, a transformer-based network is introduced to learn the discrepancy features from the raw data. Then, a maximum mean discrepancy loss and a supervised contrastive learning loss for raw and augmentation data are established to achieve global domain alignment and instance-based domain alignment. Finally, an unsupervised contrastive learning loss for the augmentation data of the target domain is established to further improve the diagnostic performance. In five cross-domain fault diagnosis tasks representing real industrial scenarios set, the average diagnostic accuracy of the proposed method is 84.39%, which is more than 10% higher than the two existing advanced domain adaptation methods. The experimental results demonstrate that the proposed method achieves high diagnostic performance in real industrial scenarios where labeled data is lacking. This shows its significant benefits for monitoring the condition of critical bearings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助实验顺顺利利采纳,获得10
1秒前
IyGnauH发布了新的文献求助10
1秒前
昏睡的蟠桃应助emmm采纳,获得100
3秒前
3秒前
3秒前
SYLH应助PROTAC采纳,获得10
6秒前
麦穗完成签到,获得积分10
6秒前
领导范儿应助flasher22采纳,获得10
7秒前
7秒前
turquoise发布了新的文献求助10
8秒前
Wang1991发布了新的文献求助10
8秒前
辇道增七应助my采纳,获得10
9秒前
11秒前
12秒前
小恶心完成签到 ,获得积分10
12秒前
冷艳的孤晴完成签到,获得积分10
14秒前
15秒前
16秒前
turquoise完成签到,获得积分10
16秒前
龍焱发布了新的文献求助10
17秒前
Zkxxxx应助fcyyc采纳,获得10
17秒前
18秒前
18秒前
19秒前
19秒前
森系完成签到,获得积分10
22秒前
小曾发布了新的文献求助10
22秒前
邱老黑发布了新的文献求助10
23秒前
23秒前
23秒前
快乐滑板发布了新的文献求助30
23秒前
24秒前
flasher22发布了新的文献求助10
24秒前
25秒前
26秒前
happyalice发布了新的文献求助10
26秒前
BICEIT发布了新的文献求助10
27秒前
snsut发布了新的文献求助10
27秒前
28秒前
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958130
求助须知:如何正确求助?哪些是违规求助? 3504312
关于积分的说明 11117892
捐赠科研通 3235623
什么是DOI,文献DOI怎么找? 1788403
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802547