Truck‐Drone Pickup and Delivery Service Optimization With Availability Profiles

无人机 皮卡 卡车 服务(商务) 计算机科学 节点(物理) 集合(抽象数据类型) 运输工程 工程类 业务 汽车工程 营销 人工智能 结构工程 生物 图像(数学) 程序设计语言 遗传学
作者
Yunqiang Yin,Dongwei Li,Dujuan Wang,Yugang Yu,T.C.E. Cheng
出处
期刊:Naval Research Logistics [Wiley]
卷期号:72 (4): 534-565 被引量:4
标识
DOI:10.1002/nav.22238
摘要

ABSTRACT The absence of customers at the time of a pickup or delivery service not only results in additional costs associated with the failed service attempt but also decreases customer satisfaction. Thus, it is crucial to account for the possible convenient times of customers when designing the pickup and delivery service scheme. With the advantages of the drone in delivery speed and transport costs, we investigate the truck‐drone pickup and delivery problem with availability profiles, in which each node has an availability profile that consists of a set of service time windows, each of which has an availability probability such that the pickup or delivery service can be carried out at the node within the time window. The pickup and delivery services are collaboratively performed by a set of trucks and drones, in which each truck carries a drone. The truck can simultaneously perform the pickup and delivery services and act as an intermediate mobile warehouse, which must wait at the parking location for the return of the drone associated with it once it has dispatched the drone for performing services. The drone can independently provide the pickup and delivery services after taking off from the truck that carries it, and finally return to the truck after finishing the services. The goal is to find the optimal collaborative service scheme of the trucks and drones with the objective of minimizing the sum of the operational cost and expected service failure cost. To solve the problem, we devise an exact branch‐and‐price‐and‐cut (BPC) algorithm that incorporates a novel column‐and‐cut generation (CCG) scheme and a specialized bi‐directional labeling algorithm based on some structural properties for the intractable pricing problem, and introduce some improvement strategies to improve the performance of the solution algorithm. The numerical studies on random instances illustrate that the developed BPC algorithm performs significantly better than the CPLEX solver and two existing BPC algorithms, in which the service time window dominance rule in the developed structural properties and the improvement strategies significantly enhance the performance of the developed BPC algorithm, and the in‐out CCG scheme can efficiently overcome the degenerate behaviors of the classical column generation and cutting‐plane methods. The numerical studies on a case study of Cainiao intra‐city online‐to‐offline order delivery highlight the benefits of the truck‐drone collaborative pattern, which achieves about 10.32% cost savings and a 3.43% service failure rate decrease on average compared to the truck‐only pattern, and quantify the potential benefits of accounting for availability profiles, which can effectively make a trade‐off between the operational cost and service failure ratio.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夹夹完成签到,获得积分10
刚刚
1秒前
1秒前
大写的笨完成签到,获得积分10
1秒前
喜悦晓夏完成签到,获得积分10
1秒前
桐伶完成签到,获得积分10
2秒前
2秒前
快意恩仇关注了科研通微信公众号
2秒前
2秒前
冷傲的道罡完成签到,获得积分10
3秒前
dmyinZz发布了新的文献求助10
3秒前
3秒前
4秒前
TRY完成签到,获得积分10
4秒前
传奇3应助小金鱼儿采纳,获得10
4秒前
4秒前
研友_nd7b5L发布了新的文献求助10
5秒前
单韦c关注了科研通微信公众号
5秒前
5秒前
赘婿应助简单的钢铁侠采纳,获得30
5秒前
5秒前
SY完成签到,获得积分10
5秒前
fire发布了新的文献求助80
5秒前
孤独的匕发布了新的文献求助10
6秒前
han完成签到 ,获得积分10
6秒前
欢呼妙彤完成签到,获得积分10
6秒前
6秒前
金木完成签到,获得积分10
6秒前
高挑的萤完成签到 ,获得积分10
6秒前
沈李发布了新的文献求助10
7秒前
7秒前
在一起完成签到,获得积分10
7秒前
7秒前
壮观砖家完成签到,获得积分20
7秒前
昏睡的铃铛完成签到,获得积分20
7秒前
8秒前
luoboni发布了新的文献求助30
8秒前
9秒前
ttt完成签到,获得积分10
9秒前
大个应助2哇哇哇采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629758
求助须知:如何正确求助?哪些是违规求助? 4720546
关于积分的说明 14970558
捐赠科研通 4787741
什么是DOI,文献DOI怎么找? 2556498
邀请新用户注册赠送积分活动 1517659
关于科研通互助平台的介绍 1478271