Prediction of Lithium‐Ion Battery Remaining Useful Life via Empirical Mode Decomposition‐ Autoregressive Integrated Moving Average and Regularized Particle Filter Algorithm

自回归积分移动平均 希尔伯特-黄变换 电池(电) 锂离子电池 颗粒过滤器 算法 自回归模型 计算机科学 电池容量 滤波器(信号处理) 时间序列 数学 统计 机器学习 功率(物理) 物理 量子力学 计算机视觉
作者
Zuxin Li,Zhiduan Cai,Jun Zheng,Shengyu Shen,Wen Dong,Dingding Liu
出处
期刊:Energy technology [Wiley]
卷期号:11 (9)
标识
DOI:10.1002/ente.202300232
摘要

This article focuses on improving the prediction accuracy of lithium‐ion battery's remaining useful life (RUL) by combining empirical mode decomposition (EMD), autoregressive integrated moving average (ARIMA), and regularized particle filter (RPF). First, to obtain detailed information about the battery capacity degradation, the monitored capacity data are decoupled by EMD. Second, the long‐term predicted model is constructed by ARIMA for the decoupled components. Finally, the long‐term prediction results are utilized as the measurement equation of the RPF prediction framework. In the proposed novel hybrid framework combining EMD‐ARIMA and RPF, the capacity prediction values are corrected and updated during the iteration of the regularized particle filter. With the estimated capacity data of every cycle, it can be detected whether the batteries reach their service life threshold. To validate the performance of the aforementioned method, the comparative experiments which are based on the NASA Prognostic Center of Excellence battery data sets are performed. According to the analysis results, higher prediction accuracy has been obtained with the proposed method in the lithium‐ion battery RUL, compared with the other three methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海之恋心完成签到 ,获得积分10
1秒前
科研通AI6应助背后的雪巧采纳,获得10
5秒前
量子星尘发布了新的文献求助10
8秒前
李健的小迷弟应助thchiang采纳,获得10
9秒前
欢呼的雨琴完成签到 ,获得积分10
20秒前
SJW--666完成签到,获得积分0
20秒前
木木完成签到,获得积分10
23秒前
27秒前
thchiang发布了新的文献求助10
31秒前
迅速千愁完成签到 ,获得积分10
35秒前
量子星尘发布了新的文献求助10
36秒前
Nana完成签到 ,获得积分10
37秒前
genius完成签到 ,获得积分10
46秒前
46秒前
thchiang完成签到 ,获得积分10
49秒前
量子星尘发布了新的文献求助10
53秒前
Aixia完成签到 ,获得积分10
54秒前
1分钟前
小叶子完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
ChatGPT完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
安详映阳完成签到 ,获得积分10
1分钟前
张昌炜完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
饱满语风完成签到 ,获得积分10
1分钟前
背后的雪巧完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
long0809完成签到,获得积分10
1分钟前
干净思远完成签到,获得积分10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
luobote完成签到 ,获得积分10
2分钟前
alex12259完成签到 ,获得积分10
2分钟前
Antibody完成签到 ,获得积分10
2分钟前
明朗完成签到 ,获得积分0
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418544
求助须知:如何正确求助?哪些是违规求助? 4534237
关于积分的说明 14143298
捐赠科研通 4450452
什么是DOI,文献DOI怎么找? 2441265
邀请新用户注册赠送积分活动 1432974
关于科研通互助平台的介绍 1410399