Battery State of health estimation with fewer labelled data: a semi-supervised approach

计算机科学 人工智能 机器学习 电池(电) 人工神经网络 标记数据 相似性(几何) 监督学习 估计 训练集 模式识别(心理学) 工程类 功率(物理) 图像(数学) 物理 系统工程 量子力学
作者
Jinpeng Tian,Rui Xiong
标识
DOI:10.1109/cieec58067.2023.10165770
摘要

Accurate estimation of battery state of health (SOH) is indispensable for reliable battery management. While machine learning methods are playing an increasingly important role, they generally require profuse training samples which consist of input data and measured capacities. To alleviate this issue, we present a semi-supervised approach that can draw on easily available training samples without measured capacities to train deep neural networks (DNNs) with high SOH estimation performance. First, a label propagation strategy is proposed to generate pseudo capacities for unlabelled training samples by resorting to the similarity between input data. Then, a training strategy is designed to efficiently train the DNN using the training samples with measured and pseudo capacities while taking into account the label propagation errors. A large battery degradation dataset is developed for method validation. End-to-end SOH estimation using is carried out based on a typical long short-term memory (LSTM) DNN. The validation results based on electrochemical impedance spectra demonstrate that reducing the number of training samples deteriorates the performance of the supervised DNN. In contrast, the proposed method can achieve higher accuracy than the supervised DNN and another two machine learning models with fewer labelled training samples. Our results provide an efficient and general approach to developing data-driven SOH estimation models with reduced data collection efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KK发布了新的文献求助10
刚刚
斯文败类应助shusen采纳,获得10
刚刚
刚刚
lincool完成签到,获得积分10
1秒前
ldkl应助收手吧大哥采纳,获得30
1秒前
完美世界应助haoqisheng采纳,获得10
1秒前
小马甲应助郑zz采纳,获得10
2秒前
魔幻小蚂蚁完成签到,获得积分10
2秒前
2秒前
xzp发布了新的文献求助10
2秒前
YU关注了科研通微信公众号
2秒前
2秒前
cw发布了新的文献求助10
2秒前
2秒前
之之完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
tty发布了新的文献求助10
3秒前
xldhts完成签到,获得积分10
4秒前
不太想学习完成签到 ,获得积分10
4秒前
4秒前
Bowen发布了新的文献求助10
4秒前
5秒前
5秒前
科研通AI6应助困困困困采纳,获得30
5秒前
VDC发布了新的文献求助10
5秒前
脑洞疼应助Gary采纳,获得10
5秒前
5秒前
6秒前
momucy发布了新的文献求助10
6秒前
dahuahau完成签到,获得积分10
7秒前
7秒前
Klenows发布了新的文献求助10
8秒前
笨笨秋白完成签到,获得积分10
8秒前
echoyao发布了新的文献求助10
8秒前
QhL完成签到,获得积分10
8秒前
8秒前
情怀应助maodoujie采纳,获得10
8秒前
Auh发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576354
求助须知:如何正确求助?哪些是违规求助? 3995613
关于积分的说明 12369373
捐赠科研通 3669547
什么是DOI,文献DOI怎么找? 2022294
邀请新用户注册赠送积分活动 1056342
科研通“疑难数据库(出版商)”最低求助积分说明 943562