Battery State of health estimation with fewer labelled data: a semi-supervised approach

计算机科学 人工智能 机器学习 电池(电) 人工神经网络 标记数据 相似性(几何) 监督学习 估计 训练集 模式识别(心理学) 工程类 功率(物理) 物理 系统工程 量子力学 图像(数学)
作者
Jinpeng Tian,Rui Xiong
标识
DOI:10.1109/cieec58067.2023.10165770
摘要

Accurate estimation of battery state of health (SOH) is indispensable for reliable battery management. While machine learning methods are playing an increasingly important role, they generally require profuse training samples which consist of input data and measured capacities. To alleviate this issue, we present a semi-supervised approach that can draw on easily available training samples without measured capacities to train deep neural networks (DNNs) with high SOH estimation performance. First, a label propagation strategy is proposed to generate pseudo capacities for unlabelled training samples by resorting to the similarity between input data. Then, a training strategy is designed to efficiently train the DNN using the training samples with measured and pseudo capacities while taking into account the label propagation errors. A large battery degradation dataset is developed for method validation. End-to-end SOH estimation using is carried out based on a typical long short-term memory (LSTM) DNN. The validation results based on electrochemical impedance spectra demonstrate that reducing the number of training samples deteriorates the performance of the supervised DNN. In contrast, the proposed method can achieve higher accuracy than the supervised DNN and another two machine learning models with fewer labelled training samples. Our results provide an efficient and general approach to developing data-driven SOH estimation models with reduced data collection efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
DAI完成签到,获得积分10
3秒前
大鱼发布了新的文献求助30
3秒前
思源应助blue采纳,获得30
3秒前
4秒前
洋洋发布了新的文献求助10
6秒前
思源应助微风采纳,获得10
8秒前
zike发布了新的文献求助10
9秒前
所所应助猝不死的牛马采纳,获得10
11秒前
量子星尘发布了新的文献求助10
13秒前
Ava应助樱桃儿采纳,获得10
13秒前
16秒前
西兰花完成签到,获得积分20
16秒前
风雅发布了新的文献求助10
17秒前
文静千凡发布了新的文献求助10
22秒前
英俊的铭应助w_采纳,获得10
22秒前
23秒前
嘉诚发布了新的文献求助10
23秒前
23秒前
zike完成签到,获得积分10
23秒前
英姑应助西兰花采纳,获得10
24秒前
Wure发布了新的文献求助10
24秒前
27秒前
28秒前
万能图书馆应助邓桂灿采纳,获得10
28秒前
28秒前
洋洋发布了新的文献求助10
30秒前
w_发布了新的文献求助10
32秒前
dmeng发布了新的文献求助10
33秒前
醉熏的天与应助凌七采纳,获得10
37秒前
ruby完成签到,获得积分10
37秒前
zll完成签到,获得积分10
38秒前
韩晚渔完成签到 ,获得积分10
38秒前
41秒前
43秒前
hh完成签到,获得积分10
43秒前
彩色曼雁发布了新的文献求助10
45秒前
汉堡包应助张豪杰采纳,获得10
45秒前
46秒前
专注凌文发布了新的文献求助10
47秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952525
求助须知:如何正确求助?哪些是违规求助? 3497889
关于积分的说明 11089301
捐赠科研通 3228428
什么是DOI,文献DOI怎么找? 1784906
邀请新用户注册赠送积分活动 868943
科研通“疑难数据库(出版商)”最低求助积分说明 801309