材料科学
电介质
陶瓷
烧结
拉曼光谱
八面体
兴奋剂
微波食品加热
蓝移
复合材料
结晶学
晶体结构
光学
光电子学
光致发光
化学
物理
量子力学
作者
Chongsheng Wu,Kui Liu,Honglan Lai,Fang Xu
标识
DOI:10.1016/j.jmat.2023.06.004
摘要
Herein, the sintering behavior and dielectric properties of Ta5+-doped Li3Mg4NbO8 ceramics were investigated by solid-phase reactions in combination with first-principles calculations. In particular, Li3Mg4Nb0.96Ta0.04O8 illustrates the best dielectric properties after sintering at 1,175 °C with εr = 13.71 ± 0.20, Q × f = 132,112 ± 2,391 GHz (increased by 25 %) and τf = (25.07 ± 1.36)× 10−6 °C−1. The non-intrinsic factors reflect that a small amount of Ta5+ doping produces a secondary phase, increased densification, and grain size, all of which optimize the dielectric properties. The dominant intrinsic factors indicate that the increase in bond ionicity, the greater polarization of Ta5+, and the blueshift of the Raman characteristic peak all lead to an increase in εr. The increase in lattice energy and the decrease in the damping behavior of the Nb/Ta-O bond vibrations lead to an increase in Q × f. The weakening of the Nb/TaO6 octahedral distortion leads to an optimization of τf. The modified Li3Mg4Nb0.96Ta0.04O8 ceramics have promising applications in microwave communications.
科研通智能强力驱动
Strongly Powered by AbleSci AI