泰勒级数
多项式的
人工神经网络
黑匣子
推论
趋同(经济学)
计算机科学
有理函数
功能(生物学)
多项式展开
编码(集合论)
深层神经网络
特征(语言学)
订单(交换)
算法
深度学习
选择(遗传算法)
人工智能
理论计算机科学
应用数学
数学
纯数学
数学分析
语言学
哲学
集合(抽象数据类型)
财务
进化生物学
经济
生物
程序设计语言
经济增长
作者
Tingxiong Xiao,Weihang Zhang,Cheng Yang,Jinli Suo
出处
期刊:Cornell University - arXiv
日期:2023-01-01
标识
DOI:10.48550/arxiv.2307.08192
摘要
Despite their remarkable performance, deep neural networks remain mostly ``black boxes'', suggesting inexplicability and hindering their wide applications in fields requiring making rational decisions. Here we introduce HOPE (High-order Polynomial Expansion), a method for expanding a network into a high-order Taylor polynomial on a reference input. Specifically, we derive the high-order derivative rule for composite functions and extend the rule to neural networks to obtain their high-order derivatives quickly and accurately. From these derivatives, we can then derive the Taylor polynomial of the neural network, which provides an explicit expression of the network's local interpretations. Numerical analysis confirms the high accuracy, low computational complexity, and good convergence of the proposed method. Moreover, we demonstrate HOPE's wide applications built on deep learning, including function discovery, fast inference, and feature selection. The code is available at https://github.com/HarryPotterXTX/HOPE.git.
科研通智能强力驱动
Strongly Powered by AbleSci AI