材料科学
纳米技术
金属有机骨架
纳米颗粒
表面改性
分子成像
金刚烷
超分子化学
分子
化学工程
化学
有机化学
体内
工程类
生物技术
吸附
生物
作者
Qiuhui Hu,Bo Zhang,Huiming Ren,Xiaoxuan Zhou,Chengbin He,Youqing Shen,Zhuxian Zhou,Hongjie Hu
标识
DOI:10.1016/j.actbio.2023.07.026
摘要
Molecular imaging of disease with multifunctional nanoparticles has improved specificity and sensitivity but also raises the complexity, potential toxicity, and cost. Here, we show a facile and degradable self-assembly β-cyclodextrin metal-organic framework (β-CD-MOF) nanoplatform for customizable multifunctional imaging. These β-CD-MOF nanoparticles were obtained with favorable morphology and size by controlling the degradation time. The β-CD-MOF were used as nanoplatforms for facile functionalization with adamantane (Ad)-modified probes through host-guest interactions between the surface β-CD units and Ad molecules. We demonstrated the method's feasibility and capability by developing various contrast agents for multiple biomedical imaging, including fluorescence imaging, magnetic resonance imaging (MRI), and computed tomography (CT) imaging. The nanoprobes showed superior performance compared to the corresponding small molecular probes, including better physio-chemical properties (e.g., about 5 times of T1 relaxivity for MRI, 1.2 times of Hounsfield units for CT), improved pharmacokinetics, effective tissue imaging capability, and low safety concerns. These β-CD-MOF-based nanoparticles are promising host-guest nanoplatforms for developing multifunctional and safe imaging probes. Molecular imaging of disease with multifunctional nanoparticles has improved specificity and sensitivity but also raises the complexity, potential toxicity, and cost. Here, we introduce facile and degradable self-assembly β-cyclodextrin metal-organic framework (β-CD-MOF) nanoplatforms for customizable multifunctional imaging. The significance of this work includes: 1) This work reports the tailoring of MOFs nanoparticles with suitable sizes and shapes for biomedical applications through controllable morphological transition and degradation; 2) The β-CD-MOF-based host-guest nanoplatforms are facile and feasible for developing multifunctional nanoparticular contrast agents for effective tissue imaging; 3) The nanoparticular contrast agents show low safety concerns with a long-term tissue deposition similar to the small molecular probes.
科研通智能强力驱动
Strongly Powered by AbleSci AI