空位缺陷
退火(玻璃)
材料科学
亚稳态
硅
离子
碳化硅
离子注入
拉曼光谱
猝灭(荧光)
拉曼散射
衍射
晶体缺陷
结晶学
分子物理学
化学
光电子学
光学
物理
有机化学
冶金
复合材料
荧光
作者
Xinghua Liu,Fangfang Ren,Zhengpeng Wang,Xinyu Sun,Qunsi Yang,Yiwang Wang,Jiandong Ye,Xiufang Chen,Weizong Xu,Dong Zhou,Xiangang Xu,Rong Zhang,Hai Lu
标识
DOI:10.1088/1361-6463/acc5f6
摘要
Abstract Single-photon emitters based on intrinsic defects in silicon carbide (SiC) are promising as solid-state qubits for the quantum information storage, whereas defect engineering in a controllable manner still remains challenging. Herein, the thermally-driven defect dynamic reaction in the ion implanted 4H-SiC has been exploited through the optical emission spectra of defects. For the heavy-ion (Si or Ar) implanted samples with abundant Frenkel pairs, the silicon vacancies (V Si ) are energetically converted into the carbon antisite-vacancy pair (C Si -V C ) upon annealing till 1300 °C for 30 min, accompanied with the gradual lattice recovery and local strain relaxation. The further temperature elevation dissociates the metastable C Si -V C into carbon antisite (C Si ) and carbon vacancy (V C ), as supported by the consequent quenching of the (C Si -V C )-related emission at 700 nm. Thus, the whole defect reaction is probed as the vacancy interconversion from V Si to V C with the byproduct of stacking faults. In contrast, the intermediate C Si -V C complexes are not energetically favorable during the annealing of the H-implanted sample, which results from the negligible generation of Frenkel pairs, as supported by the x-ray diffraction patterns and Raman scattering analysis. These findings provide guidance for defect engineering in SiC toward the creation of reliable single photon emitters.
科研通智能强力驱动
Strongly Powered by AbleSci AI