A Conceptual Framework of Data Readiness for the Health and Aging Brain Study‐Health Disparities

缺少数据 插补(统计学) 计算机科学 离群值 支持向量机 数据质量 特征工程 特征(语言学) 机器学习 数据挖掘 数据科学 人工智能 工程类 深度学习 语言学 哲学 公制(单位) 运营管理
作者
Fan Zhang,Melissa Petersen,Leigh Johnson,James Hall,Sid E. O’Bryant
出处
期刊:Alzheimers & Dementia [Wiley]
卷期号:19 (S15)
标识
DOI:10.1002/alz.079959
摘要

Abstract Background The Health and Aging Brain Study: Health Disparities (HABS‐HD) seeks to understand the biological, social and environmental factors that impact brain aging among diverse communities. HABS‐HD, like many other NIH funded data‐sharing projects, has important data assets for various uses, including social, environmental and behavioral data, and multiple data flow pathways. Machine learning (ML) develops algorithms and models to continuously improve itself over time, but the determination of data quality and its readiness are needed for these models to operate efficiently. Therefore, developing a data readiness reporting methodology has become a very urgent task for HABS‐HD. Method In this study, we developed a conceptual framework of data readiness. First, we analyzed the missing data percentage and used ML‐Based Multiple Imputation (MLMI) for missing data imputation. Then, we performed SVM based on Recursive Feature Elimination and Cross Validation (SVM‐RFE‐CV) for feature elimination and outlier removal. Lastly, we rated the data readiness based on the three metrics: missing data percentage, performance before feature engineering, and performance after feature engineering to rate data readiness. All the three scores were averaged to rate the overall readiness of data. Result A framework for calculating overall average score for readiness of data was presented (1 stands for completely accessible, 0 for not accessible at all, and 0.5 for neutral). Our results show that the framework of data readiness was straightforward and useful in assessing how ready the HABS‐HD data is for ML. Conclusion The systematic analysis of readiness of data before building ML models is of utmost importance. And it has a significant impact on biomarker discovery and disease prediction application for Alzheimer’s disease. The conceptual framework of data readiness works well for our Alzheimer’s disease models in HABS‐HD. It can also be applied to other disease data readiness reporting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
胖豆完成签到,获得积分10
刚刚
刚刚
你看起来很好吃嘛完成签到 ,获得积分10
刚刚
好的哥发布了新的文献求助10
刚刚
1秒前
科目三应助dhyzf1214采纳,获得10
1秒前
一叶扁舟完成签到,获得积分10
1秒前
灵犀完成签到,获得积分10
1秒前
共享精神应助Kun采纳,获得10
1秒前
俊逸的剑愁完成签到,获得积分10
2秒前
领导范儿应助书生采纳,获得10
2秒前
3秒前
3秒前
4秒前
令狐初之发布了新的文献求助10
5秒前
5秒前
不不高完成签到,获得积分10
6秒前
搜集达人应助阿衡采纳,获得10
6秒前
6秒前
沉默钢笔完成签到,获得积分10
7秒前
7秒前
大反应釜发布了新的文献求助20
7秒前
zhouti497541171完成签到,获得积分10
8秒前
香蕉觅云应助科研通管家采纳,获得30
8秒前
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
kingwill应助科研通管家采纳,获得20
8秒前
怡米李完成签到,获得积分10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
张宇茹应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
9秒前
9秒前
小舒完成签到,获得积分10
9秒前
李健应助科研通管家采纳,获得30
9秒前
Weiwei应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4587888
求助须知:如何正确求助?哪些是违规求助? 4003576
关于积分的说明 12394321
捐赠科研通 3680138
什么是DOI,文献DOI怎么找? 2028520
邀请新用户注册赠送积分活动 1061960
科研通“疑难数据库(出版商)”最低求助积分说明 948041