Artificial Intelligence Identifies Factors Associated with Blood Loss and Surgical Experience in Cholecystectomy

胆囊切除术 失血 普通外科 医学 外科
作者
Josiah Aklilu,Min Sun,Shelly Goel,Sebastiano Bartoletti,Anita Rau,Griffin Olsen,Kay S. Hung,S. Mintz,Vicki Luong,Arnold Milstein,Mark J. Ott,Robert Tibshirani,Jeffrey K. Jopling,Eric C. Sorenson,Dan E. Azagury,Serena Yeung
标识
DOI:10.1056/aioa2300088
摘要

BackgroundLaparoscopic surgery videos offer valuable insights into the intraoperative skills of surgeons. Traditionally, skill assessment has focused on trainees, but analyzing the operative techniques of established surgeons can reveal behaviors that are associated with surgical expertise. Computer vision (CV), a domain of artificial intelligence (AI), facilitates scalable, video-based assessment, enabling the discovery of novel associations between surgical skill and clinical outcomes. For this study, we developed an AI-powered CV model capable of autonomously recognizing fine-grained surgical actions in laparoscopic videos and uncovering associations between these actions and operative blood loss and surgical experience.MethodsWe utilized a dataset of laparoscopic surgical videos from 243 patients who underwent cholecystectomy. We used a subset of these videos to train an AI-powered CV model to recognize 150 fine-grained surgical action triplets (SATs) comprising unique combinations of three components: surgical instruments (16 total), motions (13), and anatomical structures (19). We then used the trained AI model to recognize these SATs in all 243 case videos. We considered estimated blood loss, as reported postoperatively by the performing surgeon, and refined this measure using retrospective video review by experienced surgeons, yielding operative blood loss. We also considered surgeon experience, defined as the number of postresidency years of the operating surgeon. We used a logistic regression model to infer blood loss and surgical experience on the basis of AI-identified surgical actions in the laparoscopic videos. We subsequently analyzed the relationships among surgical actions, operative blood loss, and surgical experience.ResultsThe operating surgeons in the video dataset had 8 to 31 years of surgical experience. Estimated operative blood loss among patients ranged from 0 to 175 ml. Our model predicted binary blood loss (low vs. moderate) with an area under the receiver operator characteristic (AUROC) of 0.81 and binary surgical experience (low vs. high) with an AUROC of 0.78. Higher blood loss was significantly associated with increased duration of use of a laparoscopic suction irrigator to dissect the cystic pedicle (P=0.04) and with use of the irrigator to aspirate blood (P=0.03) or irrigate the cystic pedicle (P=0.04). High surgical experience was moderately associated with longer duration of dissection of connective tissue with L-hook electrocautery (P=0.07) and with total duration of the case (P=0.07). High surgical experience was strongly associated with elective cases (P<0.001).ConclusionsThis study demonstrates the capability of AI CV models to analyze intricate surgical activity in large volumes of video data. By training the CV model on a set of laparoscopic cholecystectomy videos and then deploying it to recognize surgical actions in a larger cohort, we obtained novel and scalable insights without labor-intensive manual review. We specifically demonstrate the capability of AI-powered CV models to correlate surgical experience and technique with intraoperative outcomes (blood loss). (Funded by the Stanford Clinical Excellence Research Center and others.)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
0029发布了新的文献求助10
2秒前
2秒前
2秒前
jhj完成签到 ,获得积分20
2秒前
3秒前
3秒前
YHY完成签到,获得积分10
4秒前
思源应助gloval采纳,获得10
4秒前
老吴发布了新的文献求助10
5秒前
郑自立发布了新的文献求助10
5秒前
5秒前
ran发布了新的文献求助10
6秒前
墨墨完成签到,获得积分10
6秒前
wangeil007发布了新的文献求助10
7秒前
不会失忆完成签到,获得积分10
7秒前
星空_发布了新的文献求助10
8秒前
8秒前
8秒前
研友_LmeK4L发布了新的文献求助10
9秒前
不吃芹菜发布了新的文献求助10
11秒前
ran完成签到,获得积分10
11秒前
cyj990522完成签到 ,获得积分10
12秒前
郑自立完成签到,获得积分20
13秒前
13秒前
Dogged完成签到 ,获得积分10
14秒前
14秒前
桐桐应助顺心的水之采纳,获得10
18秒前
不会学术的羊完成签到,获得积分10
19秒前
GRATE完成签到 ,获得积分10
22秒前
27秒前
Akim应助汪家友采纳,获得10
27秒前
28秒前
科研路上的干饭桶完成签到,获得积分10
30秒前
31秒前
32秒前
gloval发布了新的文献求助10
33秒前
33秒前
35秒前
羊羊羊发布了新的文献求助10
36秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180770
求助须知:如何正确求助?哪些是违规求助? 2830996
关于积分的说明 7982474
捐赠科研通 2492854
什么是DOI,文献DOI怎么找? 1329874
科研通“疑难数据库(出版商)”最低求助积分说明 635802
版权声明 602954