清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Artificial Intelligence Identifies Factors Associated with Blood Loss and Surgical Experience in Cholecystectomy

胆囊切除术 失血 普通外科 医学 外科
作者
Josiah Aklilu,Min Sun,Shelly Goel,Sebastiano Bartoletti,Anita Rau,Griffin Olsen,Kay S. Hung,Sheldon Mintz,Vicki Luong,Arnold Milstein,Mark J. Ott,Robert Tibshirani,Jeffrey K. Jopling,Eric C. Sorenson,Dan E. Azagury,Serena Yeung
标识
DOI:10.1056/aioa2300088
摘要

BackgroundLaparoscopic surgery videos offer valuable insights into the intraoperative skills of surgeons. Traditionally, skill assessment has focused on trainees, but analyzing the operative techniques of established surgeons can reveal behaviors that are associated with surgical expertise. Computer vision (CV), a domain of artificial intelligence (AI), facilitates scalable, video-based assessment, enabling the discovery of novel associations between surgical skill and clinical outcomes. For this study, we developed an AI-powered CV model capable of autonomously recognizing fine-grained surgical actions in laparoscopic videos and uncovering associations between these actions and operative blood loss and surgical experience. MethodsWe utilized a dataset of laparoscopic surgical videos from 243 patients who underwent cholecystectomy. We used a subset of these videos to train an AI-powered CV model to recognize 150 fine-grained surgical action triplets (SATs) comprising unique combinations of three components: surgical instruments (16 total), motions (13), and anatomical structures (19). We then used the trained AI model to recognize these SATs in all 243 case videos. We considered estimated blood loss, as reported postoperatively by the performing surgeon, and refined this measure using retrospective video review by experienced surgeons, yielding operative blood loss. We also considered surgeon experience, defined as the number of postresidency years of the operating surgeon. We used a logistic regression model to infer blood loss and surgical experience on the basis of AI-identified surgical actions in the laparoscopic videos. We subsequently analyzed the relationships among surgical actions, operative blood loss, and surgical experience. ResultsThe operating surgeons in the video dataset had 8 to 31 years of surgical experience. Estimated operative blood loss among patients ranged from 0 to 175 ml. Our model predicted binary blood loss (low vs. moderate) with an area under the receiver operator characteristic (AUROC) of 0.81 and binary surgical experience (low vs. high) with an AUROC of 0.78. Higher blood loss was significantly associated with increased duration of use of a laparoscopic suction irrigator to dissect the cystic pedicle (P=0.04) and with use of the irrigator to aspirate blood (P=0.03) or irrigate the cystic pedicle (P=0.04). High surgical experience was moderately associated with longer duration of dissection of connective tissue with L-hook electrocautery (P=0.07) and with total duration of the case (P=0.07). High surgical experience was strongly associated with elective cases (P<0.001). ConclusionsThis study demonstrates the capability of AI CV models to analyze intricate surgical activity in large volumes of video data. By training the CV model on a set of laparoscopic cholecystectomy videos and then deploying it to recognize surgical actions in a larger cohort, we obtained novel and scalable insights without labor-intensive manual review. We specifically demonstrate the capability of AI-powered CV models to correlate surgical experience and technique with intraoperative outcomes (blood loss). (Funded by the Stanford Clinical Excellence Research Center and others.)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助草木青采纳,获得10
1秒前
缺粥完成签到 ,获得积分10
5秒前
迷人面包完成签到,获得积分0
6秒前
俊逸的白梦完成签到 ,获得积分10
13秒前
栾小鱼完成签到,获得积分10
19秒前
Olivia完成签到 ,获得积分10
27秒前
嘿嘿完成签到 ,获得积分10
37秒前
zeannezg完成签到 ,获得积分10
45秒前
俊俊完成签到 ,获得积分0
47秒前
2024kyt完成签到 ,获得积分10
1分钟前
1分钟前
司马绮山完成签到,获得积分10
1分钟前
张小汉发布了新的文献求助10
1分钟前
张peter完成签到 ,获得积分10
1分钟前
1分钟前
liu95完成签到 ,获得积分10
1分钟前
摘星012完成签到 ,获得积分10
1分钟前
xianyaoz完成签到 ,获得积分10
1分钟前
NN完成签到,获得积分10
1分钟前
张小汉发布了新的文献求助10
1分钟前
1分钟前
无悔完成签到 ,获得积分10
1分钟前
张小汉完成签到,获得积分10
1分钟前
mito完成签到,获得积分10
1分钟前
莎莎完成签到 ,获得积分10
1分钟前
elisa828完成签到,获得积分10
2分钟前
Dr.Zhang应助科研通管家采纳,获得30
2分钟前
spark810应助科研通管家采纳,获得30
2分钟前
spark810应助科研通管家采纳,获得30
2分钟前
Singularity应助科研通管家采纳,获得20
2分钟前
康复小白完成签到 ,获得积分10
2分钟前
yueLu完成签到 ,获得积分10
2分钟前
橘子海完成签到 ,获得积分10
2分钟前
小小果妈完成签到 ,获得积分10
2分钟前
skp发布了新的文献求助10
2分钟前
无辜的行云完成签到 ,获得积分0
2分钟前
3分钟前
宇文雨文完成签到 ,获得积分10
3分钟前
今后应助mm_zxh采纳,获得10
3分钟前
小伊001完成签到,获得积分10
3分钟前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3081598
求助须知:如何正确求助?哪些是违规求助? 2734439
关于积分的说明 7532820
捐赠科研通 2383917
什么是DOI,文献DOI怎么找? 1264125
科研通“疑难数据库(出版商)”最低求助积分说明 612563
版权声明 597578