清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Drone for Intelligent Traffic Monitoring: Current Status and Future Trends

无人机 电流(流体) 计算机科学 航空学 计算机安全 工程类 电气工程 生物 遗传学
作者
Cao Hongbin,Zongkun Wu,Wenshuai Yu
出处
期刊:Mechanisms and machine science 卷期号:: 1133-1150
标识
DOI:10.1007/978-3-031-44947-5_88
摘要

With a large number of observation objects and diverse scene environments, limited fixed monitoring points and views make the traffic monitoring a complex and difficult task. UAVs, as mobile and agile vehicles, provide an aid for the dynamic implementation of traffic monitoring. Similar to many other application areas, the development of intelligence is mainly driven by deep learning. This paper reviews how UAVs can use deep learning methods for dynamic traffic monitoring. In particular, for detection and recognition, which fall under the umbrella of computer vision techniques, several high-performance methods are brought together, typically represented by the Yolo family of algorithms. For navigation and localization, deep learning methods can be combined into planning and scheduling as an overall control scheme for monitoring a swarm of drones. As for fusion and analysis, the detection results will be abstracted into real-time traffic flow states. It will also be integrated with the weather, time, and other related information, and heterogeneous data processing will be performed using deep learning methods to achieve intelligent analysis and decision-making. In addition, the UAV simulation platform is introduced to address the problem of insufficient actual training data. The types, performance, and typical application cases of traffic monitoring drones are also summarized and explained. With the continuous development of technology, the three aspects involved in dynamic traffic monitoring will form a more functional and cohesive closed-loop system with UAVs as the driving platform and intelligent processing algorithms as the core technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1分钟前
诚心的信封完成签到 ,获得积分10
1分钟前
章铭-111完成签到 ,获得积分10
2分钟前
Only完成签到 ,获得积分10
2分钟前
2分钟前
铅笔995完成签到,获得积分10
2分钟前
John完成签到,获得积分10
2分钟前
爱心完成签到 ,获得积分10
3分钟前
3分钟前
思源应助暴走小虎采纳,获得10
4分钟前
端庄洪纲完成签到 ,获得积分10
6分钟前
Season完成签到,获得积分10
6分钟前
百里幻竹发布了新的文献求助10
6分钟前
7分钟前
7分钟前
8分钟前
暴走小虎发布了新的文献求助10
8分钟前
滴滴如玉完成签到,获得积分10
8分钟前
8分钟前
jfc完成签到 ,获得积分10
9分钟前
John完成签到 ,获得积分10
9分钟前
9分钟前
9分钟前
founder发布了新的文献求助10
9分钟前
连安阳完成签到,获得积分10
10分钟前
HYL完成签到,获得积分10
10分钟前
陈文学完成签到,获得积分10
11分钟前
11分钟前
11分钟前
风宝宝发布了新的文献求助10
11分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
11分钟前
wanci应助founder采纳,获得10
11分钟前
11分钟前
12分钟前
ach发布了新的文献求助10
12分钟前
12分钟前
founder发布了新的文献求助10
12分钟前
12分钟前
风宝宝完成签到,获得积分10
12分钟前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463632
求助须知:如何正确求助?哪些是违规求助? 3057036
关于积分的说明 9055238
捐赠科研通 2746957
什么是DOI,文献DOI怎么找? 1507180
科研通“疑难数据库(出版商)”最低求助积分说明 696451
邀请新用户注册赠送积分活动 695956