已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Organic crystal structure prediction via coupled generative adversarial networks and graph convolutional networks

晶体结构预测 计算机科学 人工智能 晶体结构 Crystal(编程语言) 机器学习 排名(信息检索) 图形 算法 理论计算机科学 化学 结晶学 程序设计语言
作者
Zhuyifan Ye,Nannan Wang,Jiantao Zhou,Defang Ouyang
出处
期刊:The Innovation [Elsevier]
卷期号:5 (2): 100562-100562 被引量:7
标识
DOI:10.1016/j.xinn.2023.100562
摘要

Organic crystal structures exert a profound impact on the physicochemical properties and biological effects of organic compounds. Quantum mechanics (QM)-based crystal structure predictions (CSPs) have somewhat alleviated the dilemma that experimental crystal structure investigations struggle to conduct complete polymorphism studies, but the high computing cost poses a challenge to its widespread application. The present study aims to construct DeepCSP, a feasible pure machine learning framework for minute-scale rapid organic CSP. Initially, based on 177,746 data entries from the Cambridge Crystal Structure Database, a generative adversarial network was built to conditionally generate trial crystal structures under selected feature constraints for the given molecule. Simultaneously, a graph convolutional attention network was used to predict the density of stable crystal structures for the input molecule. Subsequently, the distances between the predicted density and the definition-based calculated density would be considered to be the crystal structure screening and ranking basis, and finally, the density-based crystal structure ranking would be output. Two such distinct algorithms, performing the generation and ranking functionalities, respectively, collectively constitute the DeepCSP, which has demonstrated compelling performance in marketed drug validations, achieving an accuracy rate exceeding 80% and a hit rate surpassing 85%. Inspiringly, the computing speed of the pure machine learning methodology demonstrates the potential of artificial intelligence in advancing CSP research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
zhou完成签到,获得积分20
3秒前
4秒前
潇洒忘幽发布了新的文献求助10
5秒前
6秒前
6秒前
知行合一完成签到,获得积分10
7秒前
8秒前
8秒前
zqy1111发布了新的文献求助10
9秒前
9秒前
万能图书馆应助记忆缺失采纳,获得30
9秒前
王军发布了新的文献求助10
11秒前
11秒前
ZXC发布了新的文献求助10
11秒前
李健应助个性凡儿采纳,获得10
12秒前
12秒前
orixero应助个性凡儿采纳,获得10
12秒前
打打应助个性凡儿采纳,获得10
12秒前
小二郎应助个性凡儿采纳,获得10
12秒前
uziMOF发布了新的文献求助10
12秒前
烟花应助个性凡儿采纳,获得10
12秒前
乐乐应助个性凡儿采纳,获得10
12秒前
bkagyin应助个性凡儿采纳,获得10
12秒前
852应助个性凡儿采纳,获得10
12秒前
顾矜应助个性凡儿采纳,获得10
13秒前
无花果应助个性凡儿采纳,获得10
13秒前
13秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
不配.应助科研通管家采纳,获得20
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
不配.应助科研通管家采纳,获得20
13秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
14秒前
15秒前
15秒前
茶蛋发布了新的文献求助10
15秒前
情怀应助啦啦啦啦采纳,获得10
15秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248513
求助须知:如何正确求助?哪些是违规求助? 2891915
关于积分的说明 8269223
捐赠科研通 2559929
什么是DOI,文献DOI怎么找? 1388807
科研通“疑难数据库(出版商)”最低求助积分说明 650897
邀请新用户注册赠送积分活动 627798