亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SMCC: A Novel Clustering Method for Single- and Multi-Omics Data Based on Co-Regularized Network Fusion

聚类分析 传感器融合 数据挖掘 计算机科学 人工智能 层次聚类 融合 机器学习 语言学 哲学
作者
Sha Tian,Ying Yang,Yushan Qiu,Quan Zou
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-9
标识
DOI:10.1109/tcbb.2024.3353335
摘要

Clustering is a common technique for statistical data analysis and is essential for developing precision medicine. Numerous computational methods have been proposed for integrating multi-omics data to identify cancer subtypes. However, most existing clustering models based on network fusion fail to preserve the consistency of the distribution of the data before and after fusion. Motivated by this observation, we would like to measure and minimize the distribution difference between networks, which may not be in the same space, to improve the performance of data fusion. We were therefore motivated to develop a flexible clustering model, based on network fusion, that minimizes the distribution difference between the data before and after fusion by co-regularization; the model can be applied to both single- and multi-omics data. We propose a new network fusion model for single- and multi-omics data clustering for identifying cancer or cell subtypes based on co-regularized network fusion (SMCC). SMCC integrates low-rank subspace representation and entropy to fuse networks. In addition, it measures and minimizes the distribution difference between the similarity networks and the fusion network by co-regularization. The model can both reduce the noise interference in the source data and make the statistical characteristics of the fusion result closer to those of the source data. We evaluated the clustering performance of SMCC across 16 real single- and multi-omics dataset. The experimental results demonstrated that SMCC is superior to 17 state-of-the-art clustering methods. Moreover, it is effective for identifying cancer or cell subtypes, thereby promoting the development of precision medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
6秒前
11秒前
贝儿发布了新的文献求助10
17秒前
Hello应助猫毛采纳,获得10
24秒前
27秒前
NexusExplorer应助贝儿采纳,获得10
29秒前
41秒前
德尔塔捱斯完成签到,获得积分10
50秒前
54秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
岁和景明完成签到 ,获得积分10
2分钟前
河狸上校完成签到 ,获得积分10
2分钟前
2分钟前
Joker完成签到,获得积分0
2分钟前
2分钟前
evil发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
Lucas应助W_GR采纳,获得30
3分钟前
书中魂我自不理会完成签到 ,获得积分10
3分钟前
共享精神应助evil采纳,获得10
3分钟前
3分钟前
脑洞疼应助科研通管家采纳,获得10
3分钟前
herococa应助科研通管家采纳,获得10
3分钟前
脑洞疼应助科研通管家采纳,获得10
3分钟前
evil完成签到,获得积分20
4分钟前
嘚嘚发布了新的文献求助10
4分钟前
4分钟前
FashionBoy应助zhoupu采纳,获得10
4分钟前
aiyoualxb完成签到 ,获得积分10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
嘚嘚发布了新的文献求助10
4分钟前
liudy发布了新的文献求助10
5分钟前
温暖笑容发布了新的文献求助10
5分钟前
5分钟前
西门浩宇发布了新的文献求助10
5分钟前
科目三应助liudy采纳,获得10
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957040
求助须知:如何正确求助?哪些是违规求助? 3503056
关于积分的说明 11111186
捐赠科研通 3234083
什么是DOI,文献DOI怎么找? 1787725
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264