SMCC: A Novel Clustering Method for Single- and Multi-Omics Data Based on Co-Regularized Network Fusion

聚类分析 传感器融合 数据挖掘 计算机科学 人工智能 层次聚类 融合 机器学习 哲学 语言学
作者
Sha Tian,Ying Yang,Yushan Qiu,Quan Zou
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-9
标识
DOI:10.1109/tcbb.2024.3353335
摘要

Clustering is a common technique for statistical data analysis and is essential for developing precision medicine. Numerous computational methods have been proposed for integrating multi-omics data to identify cancer subtypes. However, most existing clustering models based on network fusion fail to preserve the consistency of the distribution of the data before and after fusion. Motivated by this observation, we would like to measure and minimize the distribution difference between networks, which may not be in the same space, to improve the performance of data fusion. We were therefore motivated to develop a flexible clustering model, based on network fusion, that minimizes the distribution difference between the data before and after fusion by co-regularization; the model can be applied to both single- and multi-omics data. We propose a new network fusion model for single- and multi-omics data clustering for identifying cancer or cell subtypes based on co-regularized network fusion (SMCC). SMCC integrates low-rank subspace representation and entropy to fuse networks. In addition, it measures and minimizes the distribution difference between the similarity networks and the fusion network by co-regularization. The model can both reduce the noise interference in the source data and make the statistical characteristics of the fusion result closer to those of the source data. We evaluated the clustering performance of SMCC across 16 real single- and multi-omics dataset. The experimental results demonstrated that SMCC is superior to 17 state-of-the-art clustering methods. Moreover, it is effective for identifying cancer or cell subtypes, thereby promoting the development of precision medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可达可达完成签到,获得积分10
刚刚
1秒前
小郭完成签到,获得积分10
1秒前
myth发布了新的文献求助10
1秒前
佳佳完成签到,获得积分10
1秒前
AHA完成签到,获得积分10
1秒前
1秒前
2秒前
chenzao完成签到,获得积分10
2秒前
橘子完成签到,获得积分10
2秒前
molec完成签到,获得积分10
2秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
Wianiu应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
儒雅的夏翠完成签到,获得积分10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
英姑应助PXY采纳,获得10
4秒前
西西完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
小蘑菇应助蔡毛线采纳,获得10
5秒前
6秒前
Lyuoah完成签到,获得积分10
8秒前
biosep完成签到,获得积分10
8秒前
8秒前
可达可达发布了新的文献求助10
8秒前
林兰发布了新的文献求助10
8秒前
xxl完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4988783
求助须知:如何正确求助?哪些是违规求助? 4238185
关于积分的说明 13201856
捐赠科研通 4032000
什么是DOI,文献DOI怎么找? 2205983
邀请新用户注册赠送积分活动 1217286
关于科研通互助平台的介绍 1135457