SMCC: A Novel Clustering Method for Single- and Multi-Omics Data Based on Co-Regularized Network Fusion

聚类分析 传感器融合 数据挖掘 计算机科学 人工智能 层次聚类 融合 机器学习 哲学 语言学
作者
Sha Tian,Ying Yang,Yushan Qiu,Quan Zou
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-9
标识
DOI:10.1109/tcbb.2024.3353335
摘要

Clustering is a common technique for statistical data analysis and is essential for developing precision medicine. Numerous computational methods have been proposed for integrating multi-omics data to identify cancer subtypes. However, most existing clustering models based on network fusion fail to preserve the consistency of the distribution of the data before and after fusion. Motivated by this observation, we would like to measure and minimize the distribution difference between networks, which may not be in the same space, to improve the performance of data fusion. We were therefore motivated to develop a flexible clustering model, based on network fusion, that minimizes the distribution difference between the data before and after fusion by co-regularization; the model can be applied to both single- and multi-omics data. We propose a new network fusion model for single- and multi-omics data clustering for identifying cancer or cell subtypes based on co-regularized network fusion (SMCC). SMCC integrates low-rank subspace representation and entropy to fuse networks. In addition, it measures and minimizes the distribution difference between the similarity networks and the fusion network by co-regularization. The model can both reduce the noise interference in the source data and make the statistical characteristics of the fusion result closer to those of the source data. We evaluated the clustering performance of SMCC across 16 real single- and multi-omics dataset. The experimental results demonstrated that SMCC is superior to 17 state-of-the-art clustering methods. Moreover, it is effective for identifying cancer or cell subtypes, thereby promoting the development of precision medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孟威发布了新的文献求助20
1秒前
饱满绮波发布了新的文献求助10
2秒前
无限的千凝完成签到 ,获得积分10
3秒前
Hello应助jiwen采纳,获得10
4秒前
5秒前
聂慕凝完成签到,获得积分10
5秒前
WYP发布了新的文献求助10
5秒前
6秒前
完美世界应助烩面大师采纳,获得10
8秒前
科研人发布了新的文献求助10
12秒前
婷婷应助xu采纳,获得10
13秒前
yyq617569158完成签到,获得积分20
13秒前
愤怒的紫发布了新的文献求助10
13秒前
14秒前
梅啦啦完成签到 ,获得积分10
15秒前
霸气水儿发布了新的文献求助10
16秒前
felix发布了新的文献求助10
17秒前
赵先森发布了新的文献求助10
18秒前
18秒前
夏日生生豪完成签到 ,获得积分10
19秒前
苹果小八发布了新的文献求助10
20秒前
华仔应助Foremelon采纳,获得10
20秒前
Owen应助WYP采纳,获得10
20秒前
默默的巧蕊完成签到,获得积分10
21秒前
烩面大师发布了新的文献求助10
22秒前
23秒前
23秒前
25秒前
CipherSage应助赵先森采纳,获得10
26秒前
感动归尘应助嘻嘻哈哈哈采纳,获得10
26秒前
小巷夜雨完成签到 ,获得积分10
33秒前
桐桐应助xu采纳,获得10
35秒前
畅快的幻柏完成签到,获得积分10
35秒前
小马甲应助饱满绮波采纳,获得10
36秒前
酷波er应助欧阳万仇采纳,获得10
37秒前
英姑应助笑点低的牛二采纳,获得10
37秒前
38秒前
39秒前
科研通AI2S应助苹果小八采纳,获得10
41秒前
cxy发布了新的文献求助10
43秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164075
求助须知:如何正确求助?哪些是违规求助? 2814831
关于积分的说明 7906671
捐赠科研通 2474391
什么是DOI,文献DOI怎么找? 1317493
科研通“疑难数据库(出版商)”最低求助积分说明 631797
版权声明 602198