Channel Attention and Normal-based Local Feature Aggregation Network (CNLNet): A Deep Learning Method for Pre-disaster Large-scale Outdoor Lidar Semantic Segmentation

激光雷达 计算机科学 分割 骨干网 特征(语言学) 人工智能 比例(比率) 频道(广播) 遥感 土地覆盖 航空影像 深度学习 数据挖掘 土地利用 图像(数学) 电信 地质学 地图学 地理 工程类 哲学 土木工程 语言学
作者
Chang Liu,Linlin Ge,Wei Xiang,Zheyuan Du,Qi Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-12
标识
DOI:10.1109/tgrs.2023.3339475
摘要

Pre-disaster information storage is crucial for effective disaster response. The discussion regarding deep learning-based Light Detection and Ranging (Lidar) semantic segmentation technology for indoor small items has been ongoing in recent years. However, the methods applicable to large-scale outdoor Lidar datasets for pre-disaster information storage remain limited. This study aims to propose a novel deep learning-based network for city-scale Lidar semantic segmentation to support pre-disaster information storage, called channel attention and normal-based local feature aggregation network (CNLNet). This network is designed to segment common urban land cover objects, including buildings and vegetation. This network incorporates surface normal information and the channel attention mechanism into the RandLA-Net backbone. Ablation studies have been devised to assess the performance of these two features. During the pre-processing step, color information from optical images is fused with Lidar data. The findings demonstrate that CNLNet can enhance the accuracy of the RandLA-Net backbone by improving mIoU at least 1-2%. Including one of these two features also contributes to the backbone’s improved accuracy. Notably, CNLNet outperforms other well-known networks in terms of accuracy with the test of the public Sementic3D dataset. The study further reveals that the proposed network excels in building segmentation, a crucial facet of pre-disaster information storage. Moreover, the results show that spatial resolution, whether at 0.5m or 10m per pixel for optical images, has limited influence on outcomes. One theoretical contribution of this study is the demonstration of the advantages of integrating either surface normal information or a channel attention mechanism to enhance large-scale outdoor Lidar semantic segmentation. Labeled Lidar datasets have been created for training. The practical contribution is that it can optimize disaster response by efficiently facilitating pre-disaster information storage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诸笑白发布了新的文献求助10
刚刚
刚刚
研友_LOK59L完成签到,获得积分10
2秒前
七子完成签到 ,获得积分10
3秒前
郑盼秋完成签到,获得积分10
3秒前
youjiang发布了新的文献求助10
4秒前
6秒前
孤独收割人完成签到,获得积分10
6秒前
星辰坠于海应助丰盛的煎饼采纳,获得666
8秒前
Upupcc发布了新的文献求助10
10秒前
10秒前
勤劳落雁发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
12秒前
12秒前
周周发布了新的文献求助10
12秒前
13秒前
科研通AI5应助解青文采纳,获得10
13秒前
科研通AI5应助魏伯安采纳,获得30
13秒前
nekoneko完成签到,获得积分10
16秒前
16秒前
17秒前
帅关发布了新的文献求助10
17秒前
yyyyy语言发布了新的文献求助10
18秒前
asheng98完成签到 ,获得积分10
19秒前
Chen完成签到,获得积分10
19秒前
慕青应助guajiguaji采纳,获得10
20秒前
圣晟胜发布了新的文献求助10
21秒前
21秒前
21秒前
不会失忆完成签到,获得积分10
23秒前
思源应助路边一颗小草采纳,获得10
23秒前
上官若男应助帅关采纳,获得10
24秒前
qin完成签到,获得积分10
25秒前
25秒前
流浪小诗人完成签到,获得积分10
25秒前
27秒前
知性的觅露完成签到,获得积分10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849