Channel Attention and Normal-based Local Feature Aggregation Network (CNLNet): A Deep Learning Method for Pre-disaster Large-scale Outdoor Lidar Semantic Segmentation

激光雷达 计算机科学 分割 骨干网 特征(语言学) 人工智能 比例(比率) 频道(广播) 遥感 土地覆盖 航空影像 深度学习 数据挖掘 土地利用 图像(数学) 电信 地质学 地图学 地理 工程类 哲学 土木工程 语言学
作者
Chang Liu,Linlin Ge,Wei Xiang,Zheyuan Du,Qi Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-12
标识
DOI:10.1109/tgrs.2023.3339475
摘要

Pre-disaster information storage is crucial for effective disaster response. The discussion regarding deep learning-based Light Detection and Ranging (Lidar) semantic segmentation technology for indoor small items has been ongoing in recent years. However, the methods applicable to large-scale outdoor Lidar datasets for pre-disaster information storage remain limited. This study aims to propose a novel deep learning-based network for city-scale Lidar semantic segmentation to support pre-disaster information storage, called channel attention and normal-based local feature aggregation network (CNLNet). This network is designed to segment common urban land cover objects, including buildings and vegetation. This network incorporates surface normal information and the channel attention mechanism into the RandLA-Net backbone. Ablation studies have been devised to assess the performance of these two features. During the pre-processing step, color information from optical images is fused with Lidar data. The findings demonstrate that CNLNet can enhance the accuracy of the RandLA-Net backbone by improving mIoU at least 1-2%. Including one of these two features also contributes to the backbone’s improved accuracy. Notably, CNLNet outperforms other well-known networks in terms of accuracy with the test of the public Sementic3D dataset. The study further reveals that the proposed network excels in building segmentation, a crucial facet of pre-disaster information storage. Moreover, the results show that spatial resolution, whether at 0.5m or 10m per pixel for optical images, has limited influence on outcomes. One theoretical contribution of this study is the demonstration of the advantages of integrating either surface normal information or a channel attention mechanism to enhance large-scale outdoor Lidar semantic segmentation. Labeled Lidar datasets have been created for training. The practical contribution is that it can optimize disaster response by efficiently facilitating pre-disaster information storage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助aniu采纳,获得10
1秒前
万康发布了新的文献求助80
6秒前
仁凯发布了新的文献求助10
7秒前
8秒前
9秒前
11秒前
yoozii发布了新的文献求助10
11秒前
aniu发布了新的文献求助10
13秒前
雪白问兰应助倪莺媛采纳,获得10
13秒前
简因发布了新的文献求助30
14秒前
俏皮芹完成签到,获得积分10
14秒前
啦啦啦发布了新的文献求助10
15秒前
15秒前
科研通AI2S应助汐汐采纳,获得10
15秒前
小海完成签到 ,获得积分10
16秒前
不配.应助cj采纳,获得50
16秒前
16秒前
烟花应助正直肖采纳,获得10
17秒前
sing完成签到,获得积分10
17秒前
18秒前
深情安青应助科研通管家采纳,获得10
19秒前
汉堡包应助科研通管家采纳,获得10
19秒前
英俊的铭应助科研通管家采纳,获得10
19秒前
葡萄成熟应助科研通管家采纳,获得10
19秒前
乐乐应助科研通管家采纳,获得10
19秒前
研友_VZG7GZ应助科研通管家采纳,获得10
19秒前
小蘑菇应助科研通管家采纳,获得10
19秒前
Muttu完成签到,获得积分20
19秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
领导范儿应助WZQ采纳,获得10
20秒前
情怀应助科研通管家采纳,获得10
20秒前
20秒前
上官若男应助ROY采纳,获得10
21秒前
22秒前
陆雪发布了新的文献求助10
24秒前
一个小张啊完成签到 ,获得积分10
25秒前
雨天后完成签到,获得积分10
25秒前
siner发布了新的文献求助10
25秒前
25秒前
顾矜应助sunidea采纳,获得10
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136127
求助须知:如何正确求助?哪些是违规求助? 2787029
关于积分的说明 7780244
捐赠科研通 2443154
什么是DOI,文献DOI怎么找? 1298899
科研通“疑难数据库(出版商)”最低求助积分说明 625294
版权声明 600870