Label-Decoupled Medical Image Segmentation With Spatial-Channel Graph Convolution and Dual Attention Enhancement

计算机科学 卷积(计算机科学) 图像分割 人工智能 邻接表 图形 分割 计算机视觉 特征(语言学) 块(置换群论) 深度学习 模式识别(心理学) 算法 理论计算机科学 数学 人工神经网络 语言学 哲学 几何学
作者
Qingting Jiang,Hailiang Ye,Bing Yang,Feilong Cao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (5): 2830-2841 被引量:5
标识
DOI:10.1109/jbhi.2024.3367756
摘要

Deep learning-based methods have been widely used in medical image segmentation recently. However, existing works are usually difficult to simultaneously capture global long-range information from images and topological correlations among feature maps. Further, medical images often suffer from blurred target edges. Accordingly, this paper proposes a novel medical image segmentation framework named a label-decoupled network with spatial-channel graph convolution and dual attention enhancement mechanism (LADENet for short). It constructs learnable adjacency matrices and utilizes graph convolutions to effectively capture global long-range information on spatial locations and topological dependencies between different channels in an image. Then a label-decoupled strategy based on distance transformation is introduced to decouple an original segmentation label into a body label and an edge label for supervising the body branch and edge branch. Again, a dual attention enhancement mechanism, designing a body attention block in the body branch and an edge attention block in the edge branch, is built to promote the learning ability of spatial region and boundary features. Besides, a feature interactor is devised to fully consider the information interaction between the body and edge branches to improve segmentation performance. Experiments on benchmark datasets reveal the superiority of LADENet compared to state-of-the-art approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rain应助Wang采纳,获得10
2秒前
3秒前
脑洞疼应助开放青旋采纳,获得30
3秒前
Lucas应助长情胡萝卜采纳,获得30
4秒前
热心玉兰完成签到,获得积分10
5秒前
5秒前
真真发布了新的文献求助10
5秒前
5秒前
共享精神应助小分队采纳,获得10
5秒前
7秒前
高大的冰双完成签到,获得积分10
7秒前
zzm完成签到,获得积分10
7秒前
刚国忠发布了新的文献求助10
7秒前
8秒前
8秒前
yxy完成签到,获得积分10
8秒前
Owen应助芋泥桃桃采纳,获得10
8秒前
9秒前
蝉鸣一夏发布了新的文献求助10
9秒前
liulu完成签到 ,获得积分10
9秒前
10秒前
11秒前
11秒前
yzm完成签到,获得积分10
11秒前
Jeson完成签到,获得积分0
12秒前
魔丸发布了新的文献求助10
12秒前
12秒前
13秒前
机灵的波比应助Mr.Ren采纳,获得10
13秒前
加速度完成签到,获得积分10
13秒前
QRE发布了新的文献求助20
14秒前
SJJ应助枫叶人生采纳,获得10
14秒前
小分队发布了新的文献求助10
16秒前
落雨发布了新的文献求助10
16秒前
17秒前
阔达的诗云完成签到 ,获得积分10
18秒前
18秒前
19秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557071
求助须知:如何正确求助?哪些是违规求助? 4642352
关于积分的说明 14667621
捐赠科研通 4583738
什么是DOI,文献DOI怎么找? 2514386
邀请新用户注册赠送积分活动 1488750
关于科研通互助平台的介绍 1459336