清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep Learning–Augmented ECG Analysis for Screening and Genotype Prediction of Congenital Long QT Syndrome

医学 长QT综合征 队列 心电图 内科学 心脏病学 QT间期
作者
River Jiang,Christopher C. Cheung,Marta Garcia-Montero,Brianna Davies,Xinyu Cao,Damian Redfearn,Zachary M. Laksman,Steffany Grondin,Joseph Atallah,Carolina A. Escudero,Julia Cadrin‐Tourigny,Shubhayan Sanatani,Christian Steinberg,Jacqueline Joza,Robert Avram,Rafik Tadros,Andrew D. Krahn
出处
期刊:JAMA Cardiology [American Medical Association]
卷期号:9 (4): 377-377 被引量:7
标识
DOI:10.1001/jamacardio.2024.0039
摘要

Importance Congenital long QT syndrome (LQTS) is associated with syncope, ventricular arrhythmias, and sudden death. Half of patients with LQTS have a normal or borderline-normal QT interval despite LQTS often being detected by QT prolongation on resting electrocardiography (ECG). Objective To develop a deep learning–based neural network for identification of LQTS and differentiation of genotypes (LQTS1 and LQTS2) using 12-lead ECG. Design, Setting, and Participants This diagnostic accuracy study used ECGs from patients with suspected inherited arrhythmia enrolled in the Hearts in Rhythm Organization Registry (HiRO) from August 2012 to December 2021. The internal dataset was derived at 2 sites and an external validation dataset at 4 sites within the HiRO Registry; an additional cross-sectional validation dataset was from the Montreal Heart Institute. The cohort with LQTS included probands and relatives with pathogenic or likely pathogenic variants in KCNQ1 or KCNH2 genes with normal or prolonged corrected QT (QTc) intervals. Exposures Convolutional neural network (CNN) discrimination between LQTS1, LQTS2, and negative genetic test results. Main Outcomes and Measures The main outcomes were area under the curve (AUC), F1 scores, and sensitivity for detecting LQTS and differentiating genotypes using a CNN method compared with QTc-based detection. Results A total of 4521 ECGs from 990 patients (mean [SD] age, 42 [18] years; 589 [59.5%] female) were analyzed. External validation within the national registry (101 patients) demonstrated the CNN’s high diagnostic capacity for LQTS detection (AUC, 0.93; 95% CI, 0.89-0.96) and genotype differentiation (AUC, 0.91; 95% CI, 0.86-0.96). This surpassed expert-measured QTc intervals in detecting LQTS (F1 score, 0.84 [95% CI, 0.78-0.90] vs 0.22 [95% CI, 0.13-0.31]; sensitivity, 0.90 [95% CI, 0.86-0.94] vs 0.36 [95% CI, 0.23-0.47]), including in patients with normal or borderline QTc intervals (F1 score, 0.70 [95% CI, 0.40-1.00]; sensitivity, 0.78 [95% CI, 0.53-0.95]). In further validation in a cross-sectional cohort (406 patients) of high-risk patients and genotype-negative controls, the CNN detected LQTS with an AUC of 0.81 (95% CI, 0.80-0.85), which was better than QTc interval–based detection (AUC, 0.74; 95% CI, 0.69-0.78). Conclusions and Relevance The deep learning model improved detection of congenital LQTS from resting ECGs and allowed for differentiation between the 2 most common genetic subtypes. Broader validation over an unselected general population may support application of this model to patients with suspected LQTS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
游01完成签到 ,获得积分10
10秒前
Dongjie完成签到,获得积分10
24秒前
32秒前
拼搏问薇完成签到 ,获得积分10
45秒前
jerry完成签到 ,获得积分10
1分钟前
呼延幻波发布了新的文献求助10
1分钟前
1分钟前
菁菁完成签到,获得积分10
1分钟前
vsvsgo完成签到,获得积分10
1分钟前
1分钟前
1分钟前
小马甲应助科研通管家采纳,获得10
1分钟前
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
1分钟前
TsutsumiRyuu发布了新的文献求助10
1分钟前
lovexa完成签到,获得积分10
1分钟前
深情安青应助TsutsumiRyuu采纳,获得10
2分钟前
段誉完成签到 ,获得积分10
2分钟前
冰凝完成签到,获得积分10
2分钟前
baibaibaobao1完成签到,获得积分10
2分钟前
非洲大象完成签到,获得积分10
2分钟前
aiyawy完成签到 ,获得积分10
3分钟前
呼延幻波完成签到 ,获得积分10
3分钟前
大方的笑萍完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
Aurora完成签到 ,获得积分10
3分钟前
神勇的天问完成签到 ,获得积分10
3分钟前
乌冬面完成签到 ,获得积分10
4分钟前
energyharvester完成签到 ,获得积分10
4分钟前
feiying88完成签到 ,获得积分10
4分钟前
yoona完成签到 ,获得积分10
4分钟前
4分钟前
笨蛋美女完成签到 ,获得积分10
4分钟前
体贴问丝完成签到 ,获得积分10
4分钟前
WXYYQX完成签到,获得积分10
5分钟前
5分钟前
creep2020完成签到,获得积分10
5分钟前
walker发布了新的文献求助10
5分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Questioning in the Primary School 500
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
频率源分析与设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3686808
求助须知:如何正确求助?哪些是违规求助? 3237152
关于积分的说明 9829495
捐赠科研通 2949062
什么是DOI,文献DOI怎么找? 1617190
邀请新用户注册赠送积分活动 764126
科研通“疑难数据库(出版商)”最低求助积分说明 738360