清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep Learning–Augmented ECG Analysis for Screening and Genotype Prediction of Congenital Long QT Syndrome

医学 长QT综合征 队列 心电图 内科学 心脏病学 QT间期
作者
River Jiang,Christopher C. Cheung,Marta Garcia-Montero,Brianna Davies,Xinyu Cao,Damian Redfearn,Zachary M. Laksman,Steffany Grondin,Joseph Atallah,Carolina A. Escudero,Julia Cadrin‐Tourigny,Shubhayan Sanatani,Christian Steinberg,Jacqueline Joza,Robert Avram,Rafik Tadros,Andrew D. Krahn
出处
期刊:JAMA Cardiology [American Medical Association]
卷期号:9 (4): 377-377 被引量:7
标识
DOI:10.1001/jamacardio.2024.0039
摘要

Importance Congenital long QT syndrome (LQTS) is associated with syncope, ventricular arrhythmias, and sudden death. Half of patients with LQTS have a normal or borderline-normal QT interval despite LQTS often being detected by QT prolongation on resting electrocardiography (ECG). Objective To develop a deep learning–based neural network for identification of LQTS and differentiation of genotypes (LQTS1 and LQTS2) using 12-lead ECG. Design, Setting, and Participants This diagnostic accuracy study used ECGs from patients with suspected inherited arrhythmia enrolled in the Hearts in Rhythm Organization Registry (HiRO) from August 2012 to December 2021. The internal dataset was derived at 2 sites and an external validation dataset at 4 sites within the HiRO Registry; an additional cross-sectional validation dataset was from the Montreal Heart Institute. The cohort with LQTS included probands and relatives with pathogenic or likely pathogenic variants in KCNQ1 or KCNH2 genes with normal or prolonged corrected QT (QTc) intervals. Exposures Convolutional neural network (CNN) discrimination between LQTS1, LQTS2, and negative genetic test results. Main Outcomes and Measures The main outcomes were area under the curve (AUC), F1 scores, and sensitivity for detecting LQTS and differentiating genotypes using a CNN method compared with QTc-based detection. Results A total of 4521 ECGs from 990 patients (mean [SD] age, 42 [18] years; 589 [59.5%] female) were analyzed. External validation within the national registry (101 patients) demonstrated the CNN’s high diagnostic capacity for LQTS detection (AUC, 0.93; 95% CI, 0.89-0.96) and genotype differentiation (AUC, 0.91; 95% CI, 0.86-0.96). This surpassed expert-measured QTc intervals in detecting LQTS (F1 score, 0.84 [95% CI, 0.78-0.90] vs 0.22 [95% CI, 0.13-0.31]; sensitivity, 0.90 [95% CI, 0.86-0.94] vs 0.36 [95% CI, 0.23-0.47]), including in patients with normal or borderline QTc intervals (F1 score, 0.70 [95% CI, 0.40-1.00]; sensitivity, 0.78 [95% CI, 0.53-0.95]). In further validation in a cross-sectional cohort (406 patients) of high-risk patients and genotype-negative controls, the CNN detected LQTS with an AUC of 0.81 (95% CI, 0.80-0.85), which was better than QTc interval–based detection (AUC, 0.74; 95% CI, 0.69-0.78). Conclusions and Relevance The deep learning model improved detection of congenital LQTS from resting ECGs and allowed for differentiation between the 2 most common genetic subtypes. Broader validation over an unselected general population may support application of this model to patients with suspected LQTS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玛琳卡迪马完成签到,获得积分10
16秒前
陆黑暗完成签到 ,获得积分10
16秒前
ZYN完成签到,获得积分10
16秒前
你好完成签到 ,获得积分10
17秒前
霁昕完成签到 ,获得积分10
26秒前
aiyawy完成签到 ,获得积分10
33秒前
平常从蓉完成签到,获得积分10
42秒前
段誉完成签到 ,获得积分10
44秒前
木南大宝完成签到 ,获得积分10
52秒前
喜洋洋完成签到,获得积分10
1分钟前
科研通AI2S应助喜洋洋采纳,获得10
1分钟前
赘婿应助bestbanana采纳,获得10
1分钟前
lanxinge完成签到 ,获得积分10
1分钟前
摆渡人发布了新的文献求助10
1分钟前
摆渡人完成签到,获得积分10
1分钟前
孟寐以求完成签到 ,获得积分10
1分钟前
2分钟前
yuehan完成签到 ,获得积分10
2分钟前
勤劳的颤完成签到 ,获得积分10
2分钟前
xun发布了新的文献求助10
2分钟前
九五式自动步枪完成签到 ,获得积分10
2分钟前
Java完成签到,获得积分10
3分钟前
cc完成签到,获得积分10
3分钟前
维维完成签到 ,获得积分10
3分钟前
jameslee04完成签到 ,获得积分10
3分钟前
整齐的惮完成签到 ,获得积分10
3分钟前
刘文莉完成签到 ,获得积分10
3分钟前
TTDY完成签到 ,获得积分10
4分钟前
奶糖喵完成签到 ,获得积分10
4分钟前
dichunxia完成签到,获得积分10
4分钟前
wenbinvan完成签到,获得积分0
4分钟前
无言完成签到 ,获得积分10
5分钟前
共享精神应助xun采纳,获得10
5分钟前
缺粥完成签到 ,获得积分10
5分钟前
萧水白完成签到,获得积分10
5分钟前
无辜的行云完成签到 ,获得积分0
5分钟前
活力的茉莉完成签到 ,获得积分10
5分钟前
跳跃太清完成签到 ,获得积分10
6分钟前
海丽完成签到 ,获得积分10
6分钟前
脑洞疼应助diguohu采纳,获得10
6分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137039
求助须知:如何正确求助?哪些是违规求助? 2788014
关于积分的说明 7784284
捐赠科研通 2444088
什么是DOI,文献DOI怎么找? 1299724
科研通“疑难数据库(出版商)”最低求助积分说明 625522
版权声明 600999