材料科学
锂(药物)
电解质
阴极
化学工程
溶剂
电池(电)
二甲氧基乙烷
溶剂化
无机化学
离子电导率
有机化学
电极
化学
物理
工程类
内分泌学
物理化学
功率(物理)
医学
量子力学
作者
Saehun Kim,Ji Hwan Jeon,Kyobin Park,Seong Hyeon Kweon,Jae‐Hwan Hyun,Chaeeun Song,Donghyun Lee,Gawon Song,Seungho Yu,Tae Kyung Lee,Sang Kyu Kwak,Kyu Tae Lee,Sung You Hong,Nam‐Soon Choi
标识
DOI:10.1002/adma.202401615
摘要
Abstract Considering practical viability, Li‐metal battery electrolytes should be formulated by tuning solvent composition similar to electrolyte systems for Li‐ion batteries to enable the facile salt‐dissociation, ion‐conduction, and introduction of sacrificial additives for building stable electrode–electrolyte interfaces. Although 1,2‐dimethoxyethane with a high‐donor number enables the implementation of ionic compounds as effective interface modifiers, its ubiquitous usage is limited by its low‐oxidation durability and high‐volatility. Regulation of the solvation structure and construction of well‐structured interfacial layers ensure the potential strength of electrolytes in both Li‐metal and LiNi 0.8 Co 0.1 Mn 0.1 O 2 (NCM811). This study reports the build‐up of multilayer solid‐electrolyte interphase by utilizing different electron‐accepting tendencies of lithium difluoro(bisoxalato) phosphate (LiDFBP), lithium nitrate, and synthetic 1‐((trifluoromethyl)sulfonyl)piperidine. Furthermore, a well‐structured cathode–electrolyte interface from LiDFBP effectively addresses the issues with NCM811. The developed electrolyte based on a framework of highly‐ and weakly‐solvating solvents with interface modifiers enables the operation of Li|NCM811 cells with a high areal capacity cathode (4.3 mAh cm −2 ) at 4.4 V versus Li/Li + .
科研通智能强力驱动
Strongly Powered by AbleSci AI