Pull-off dynamics of mushroom-shaped adhesive structures

缩放比例 材料科学 胶粘剂 机械 粘弹性 复合材料 断裂力学 物理 几何学 数学 图层(电子)
作者
Ruozhang Li,Dongwu Li,Jun Sun,Xiaolong Zhang,Wen Ming Zhang
出处
期刊:Journal of The Mechanics and Physics of Solids [Elsevier]
卷期号:: 105519-105519
标识
DOI:10.1016/j.jmps.2023.105519
摘要

Dynamic adhesion characteristics of synthetic adhesives have attracted massive attention recently. Specific to the mushroom-shaped adhesive structures with outperformed adhesion properties, a clear understanding of the pull-off dynamics, especially the role of retraction velocity, has not been addressed yet. In this paper, based on a custom-built adhesion test apparatus allowing in-situ high-speed measurement of the interface failure, we conducted detachment tests on hundreds-micrometer-scale mushroom-shaped adhesive structures with different cap thicknesses at a retraction velocity range spanning 4 orders of magnitude. It is found that the crack propagation mode for a thin or thick cap remains the same at different retraction velocities, whereas for an intermediate cap the transition from the edge-crack mode to the center-crack mode is observable. Notably, for center-crack mode, the crack area at pull-off remains relatively constant at different velocities. The variation of the pull-off forces with velocity exhibits a scaling law at high velocity regardless of the propagation mode. Dynamic detachment models are developed by considering the rate-dependent work of adhesion to demonstrate the critical-crack-dimension invariance at different velocities and the scaling law of pull-off force with the velocity with the same scaling exponent for center- and edge-crack mode. The theoretical scaling agrees well with experiments. Furthermore, finite element analysis of the viscoelastic detachment demonstrates the stress redistribution against retraction velocities. A prominent feature is the increasing length of the cohesive zone at pull-off with the increasing velocity, indicating a potential trend of a transition to a long-range adhesive interaction. At a sufficiently large velocity, the stress spike at the crack tip disappears and a theoretical strength is almost obtained at the region beneath the stalk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iWatchTheMoon应助荣冥幽采纳,获得10
1秒前
应夏山完成签到 ,获得积分10
1秒前
mumufan完成签到,获得积分10
2秒前
科研小白完成签到,获得积分10
3秒前
思源应助安静的小蚂蚁采纳,获得10
5秒前
蔡从安发布了新的文献求助10
7秒前
蒋海完成签到 ,获得积分10
9秒前
蝶舞天涯完成签到,获得积分10
9秒前
11秒前
斯文败类应助Leo采纳,获得10
12秒前
生产队的建设者完成签到 ,获得积分10
13秒前
13秒前
搞怪的怀蕊完成签到,获得积分10
13秒前
16秒前
yishufanhua发布了新的文献求助10
17秒前
Jasper应助maclogos采纳,获得10
21秒前
breaking完成签到,获得积分10
22秒前
张一楠完成签到,获得积分10
22秒前
Hou完成签到 ,获得积分10
24秒前
科研通AI2S应助蔡从安采纳,获得10
24秒前
科研通AI2S应助蔡从安采纳,获得10
24秒前
蓝莓皇后关注了科研通微信公众号
27秒前
靓丽安珊发布了新的文献求助10
27秒前
半山完成签到,获得积分10
28秒前
28秒前
明亮的冰香完成签到 ,获得积分10
32秒前
青衍完成签到,获得积分10
33秒前
哈哈发布了新的文献求助10
33秒前
满眼喜欢遍布星河完成签到,获得积分10
35秒前
ssffzb2008完成签到,获得积分10
35秒前
优秀剑愁完成签到 ,获得积分10
35秒前
秋秋完成签到,获得积分10
37秒前
岁月如酒应助半山采纳,获得10
37秒前
38秒前
舒洛完成签到,获得积分10
38秒前
Singularity应助科研通管家采纳,获得10
40秒前
慕青应助科研通管家采纳,获得10
40秒前
40秒前
情怀应助科研通管家采纳,获得10
40秒前
Clover04应助科研通管家采纳,获得10
40秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162519
求助须知:如何正确求助?哪些是违规求助? 2813377
关于积分的说明 7900197
捐赠科研通 2472938
什么是DOI,文献DOI怎么找? 1316595
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602175