Sparse Pedestrian Character Learning for Trajectory Prediction

性格(数学) 弹道 嵌入 计算机科学 人工智能 行人 代表(政治) 跳跃式监视 图形 模式识别(心理学) 机器学习 数学 理论计算机科学 工程类 物理 几何学 天文 政治 运输工程 法学 政治学
作者
Yonghao Dong,Le Wang,Sanpin Zhou,Gang Hua,Changyin Sun
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2311.15512
摘要

Pedestrian trajectory prediction in a first-person view has recently attracted much attention due to its importance in autonomous driving. Recent work utilizes pedestrian character information, \textit{i.e.}, action and appearance, to improve the learned trajectory embedding and achieves state-of-the-art performance. However, it neglects the invalid and negative pedestrian character information, which is harmful to trajectory representation and thus leads to performance degradation. To address this issue, we present a two-stream sparse-character-based network~(TSNet) for pedestrian trajectory prediction. Specifically, TSNet learns the negative-removed characters in the sparse character representation stream to improve the trajectory embedding obtained in the trajectory representation stream. Moreover, to model the negative-removed characters, we propose a novel sparse character graph, including the sparse category and sparse temporal character graphs, to learn the different effects of various characters in category and temporal dimensions, respectively. Extensive experiments on two first-person view datasets, PIE and JAAD, show that our method outperforms existing state-of-the-art methods. In addition, ablation studies demonstrate different effects of various characters and prove that TSNet outperforms approaches without eliminating negative characters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SunYilin完成签到,获得积分10
刚刚
乐乐完成签到,获得积分10
1秒前
怕黑的凝旋完成签到 ,获得积分10
1秒前
机灵凝丹发布了新的文献求助10
1秒前
含蓄含烟完成签到,获得积分10
1秒前
2秒前
2秒前
Cutewm发布了新的文献求助10
2秒前
2秒前
3秒前
life完成签到,获得积分10
3秒前
mayu完成签到,获得积分10
3秒前
All完成签到,获得积分10
3秒前
WUHU完成签到,获得积分10
3秒前
香蕉觅云应助SunYilin采纳,获得10
4秒前
skskysky完成签到,获得积分10
4秒前
5秒前
hututu0630完成签到,获得积分20
6秒前
小哭包柯柯完成签到,获得积分20
6秒前
冷酷的乐驹完成签到 ,获得积分10
6秒前
大生蚝完成签到 ,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
QWEN完成签到,获得积分10
8秒前
善学以致用应助不安豁采纳,获得10
9秒前
orixero应助Cutewm采纳,获得80
9秒前
9秒前
万能图书馆应助tiantian8715采纳,获得10
9秒前
简单的呆呆完成签到,获得积分10
10秒前
10秒前
OYWL完成签到,获得积分20
11秒前
www发布了新的文献求助10
11秒前
日月发布了新的文献求助10
12秒前
神勇艳血完成签到 ,获得积分10
12秒前
理理丽丽完成签到,获得积分10
12秒前
万能图书馆应助无奈的萝采纳,获得10
12秒前
洋子完成签到 ,获得积分10
13秒前
淡然水绿发布了新的文献求助10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307830
求助须知:如何正确求助?哪些是违规求助? 2941398
关于积分的说明 8503161
捐赠科研通 2615878
什么是DOI,文献DOI怎么找? 1429249
科研通“疑难数据库(出版商)”最低求助积分说明 663679
邀请新用户注册赠送积分活动 648650