化学
木质素
溶剂
特罗洛克
人口
Zeta电位
粒径
硬木
阿布茨
化学工程
有机化学
核化学
色谱法
纳米颗粒
抗氧化剂
植物
DPPH
人口学
物理化学
社会学
工程类
生物
作者
Giuliana Pavaneli,Thiago Alessandre da Silva,Sônia Faria Zawadzki,Guilherme L. Sassaki,Rilton Alves de Freitas,Luiz Pereira Ramos
标识
DOI:10.1016/j.ijbiomac.2023.128612
摘要
Eucalypt kraft lignin isolated in a LignoBoost™ pilot plant was characterized by GC–MS, ICP-OES, DSC, HPSEC, 31P NMR, and HSQC 2D-NMR to be used without any further processing to produce lignin nanoparticles (LNPs) by nanoprecipitation. Tetrahydrofuran (THF) was used as a solvent, and water as a non-solvent. Microscopic analysis (TEM) showed that LNPs were regularly spherical with some hollow particles dispersed in-between, and sizes were tunable by changing the solvent dripping rate onto the non-solvent. LNP particle sizes had a bimodal distribution, with the largest population having an average apparent hydrodynamic diameter ranging from 105.6 to 75.6 nm. Colloidal dispersions of LNPs in water presented good stability in different dilutions without significant size changes upon storage at pH close to neutral for as long as 45 days. Zeta potentials around −40 mV were obtained for LNP suspensions at pH ranging from 7 to 9. The high carbohydrate content (circa 10 % on a dry basis, mostly xylans) of the lignin precursor did not interfere in LNP formation, whose antioxidant activity was expressive as demonstrated by the ABTS assay at pH 7.4, with an EC50 of 4.04 μg mL−1. Also, the Trolox® equivalent antioxidant capacity (TEAC) of LNPs reached 1.90 after 40 min reaction time.
科研通智能强力驱动
Strongly Powered by AbleSci AI