强化学习
稳健性(进化)
多输入多输出
计算机科学
数学优化
凸优化
最优化问题
正多边形
曲面(拓扑)
人工智能
算法
数学
波束赋形
电信
生物化学
化学
几何学
基因
作者
Kenneth Ikeagu,Yuan Ding,Chaoyun Song,Muhammad R. A. Khandaker
标识
DOI:10.1109/telfor59449.2023.10372753
摘要
This paper focuses on the optimization of the phase shifts of an intelligent reflecting surface (IRS) for an IRS-aided multiple input multiple output (MIMO) communication system. Motivated by the massive success of deep reinforcement learning (DRL) algorithms in handling high-dimensional continuous action spaces and tackling non-convex optimization problems, we propose a deep deterministic policy gradient (DDPG) framework for solving the formulated non-convex optimization problem. Numerical simulations demonstrate the robustness and efficiency of the proposed model in terms of spectral efficiency and algorithm run time when compared to a state-of-the-art scheme.
科研通智能强力驱动
Strongly Powered by AbleSci AI