SolGPT: A GPT-Based Static Vulnerability Detection Model for Enhancing Smart Contract Security

计算机科学 脆弱性(计算) 计算机安全 智能合约 嵌入式系统 块链
作者
Shengqiang Zeng,Hongwei Zhang,Jinsong Wang,Kai Shi
出处
期刊:Lecture Notes in Computer Science 卷期号:: 42-62 被引量:1
标识
DOI:10.1007/978-981-97-0859-8_3
摘要

In this study, we present SolGPT, a novel approach to addressing the pivotal issue of detecting and mitigating vulnerabilities inherent in smart contracts, particularly those written in Solidity, the predominant language for smart contracts. Conventional deep learning methodologies largely rely on an abundant pool of labeled training instances, a resource that remains scarce in the domain, thereby limiting the efficacy of vulnerability detection. SolGPT seeks to counteract this limitation by employing an augmented GPT-2 architecture uniquely tailored for smart contract analysis. The model is enriched by Solidity Adaptive Pre-Training to amplify its feature extraction prowess, hence, reducing the reliance on copious amounts of labeled samples. SolGPT further enhances its field-specific adaptation via the introduction of SolTokenizer, a specialized tokenizer devised for smart contracts, thereby augmenting tokenization precision and efficiency. Subsequently, the model is refined to proficiently pinpoint known vulnerabilities in smart contracts, thereby offering real-time vulnerability detection and prescribing preventive countermeasures. Comprehensive evaluation demonstrates that SolGPT outperforms the state-of-the-art detection techniques in terms of accuracy, F1 score, and two other pertinent performance metrics. Notably, when compared to the best-performing alternative among the four vulnerabilities, SolGPT exhibits an average accuracy improvement of 12.85% and an average F1 score improvement of 18.55%. Consequently, the results underscore the potential of SolGPT in substantially advancing the security framework of the blockchain ecosystem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Patrick完成签到,获得积分10
刚刚
1秒前
枝头树上的布谷鸟完成签到 ,获得积分10
2秒前
siji完成签到,获得积分10
2秒前
酷波er应助冰淇淋采纳,获得10
3秒前
科研通AI2S应助zzzy采纳,获得10
4秒前
lin完成签到 ,获得积分10
5秒前
Lewis完成签到,获得积分20
5秒前
5秒前
6秒前
立羽完成签到 ,获得积分10
6秒前
alixy完成签到,获得积分10
6秒前
7秒前
7秒前
小李儿发布了新的文献求助10
7秒前
超级小张完成签到,获得积分20
8秒前
8秒前
波安班完成签到,获得积分10
8秒前
Lewis发布了新的文献求助20
9秒前
传奇3应助迷路的煎蛋采纳,获得10
10秒前
congcong发布了新的文献求助10
10秒前
11秒前
蜂蜜完成签到,获得积分10
11秒前
蓝桉完成签到 ,获得积分10
12秒前
张景灿完成签到,获得积分10
12秒前
蘇q完成签到 ,获得积分10
13秒前
13秒前
14秒前
15秒前
nous完成签到,获得积分10
15秒前
11完成签到,获得积分10
16秒前
西西完成签到,获得积分10
16秒前
16秒前
Wang_ZiMo发布了新的文献求助10
17秒前
海绵宝宝的做饭铲完成签到,获得积分10
17秒前
17秒前
yuuka发布了新的文献求助10
18秒前
Wang驳回了李健应助
18秒前
微笑笑卉发布了新的文献求助10
19秒前
科研通AI6应助狂野大雄鹰采纳,获得10
21秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379192
求助须知:如何正确求助?哪些是违规求助? 4503605
关于积分的说明 14016048
捐赠科研通 4412336
什么是DOI,文献DOI怎么找? 2423761
邀请新用户注册赠送积分活动 1416652
关于科研通互助平台的介绍 1394188