Automated surgical planning in spring-assisted sagittal craniosynostosis correction using finite element analysis and machine learning

颅骨成形术 颅缝病 矢状缝 有限元法 矢状面 手术计划 颅骨 颅缝 口腔正畸科 截骨术 医学 纤维接头 计算机科学 外科 工程类 结构工程 解剖
作者
Jenson Jacob,Selim Bozkurt
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:18 (11): e0294879-e0294879 被引量:2
标识
DOI:10.1371/journal.pone.0294879
摘要

Sagittal synostosis is a condition caused by the fused sagittal suture and results in a narrowed skull in infants. Spring-assisted cranioplasty is a correction technique used to expand skulls with sagittal craniosynostosis by placing compressed springs on the skull before six months of age. Proposed methods for surgical planning in spring-assisted sagittal craniosynostosis correction provide information only about the skull anatomy or require iterative finite element simulations. Therefore, the selection of surgical parameters such as spring dimensions and osteotomy sizes may remain unclear and spring-assisted cranioplasty may yield sub-optimal surgical results. The aim of this study is to develop the architectural structure of an automated tool to predict post-operative surgical outcomes in sagittal craniosynostosis correction with spring-assisted cranioplasty using machine learning and finite element analyses. Six different machine learning algorithms were tested using a finite element model which simulated a combination of various mechanical and geometric properties of the calvarium, osteotomy sizes, spring characteristics, and spring implantation positions. Also, a statistical shape model representing an average sagittal craniosynostosis calvarium in 5-month-old patients was used to assess the machine learning algorithms. XGBoost algorithm predicted post-operative cephalic index in spring-assisted sagittal craniosynostosis correction with high accuracy. Finite element simulations confirmed the prediction of the XGBoost algorithm. The presented architectural structure can be used to develop a tool to predict the post-operative cephalic index in spring-assisted cranioplasty in patients with sagittal craniosynostosis can be used to automate surgical planning and improve post-operative surgical outcomes in spring-assisted cranioplasty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gaochunjing发布了新的文献求助10
1秒前
冷傲迎梦发布了新的文献求助10
1秒前
Senna发布了新的文献求助10
1秒前
SCN完成签到,获得积分10
3秒前
joker完成签到 ,获得积分10
4秒前
SciGPT应助诚心代芙采纳,获得10
4秒前
5秒前
核桃完成签到,获得积分10
5秒前
丁sir完成签到,获得积分10
6秒前
Superg完成签到,获得积分10
7秒前
7秒前
8秒前
风车发布了新的文献求助10
8秒前
失眠的血茗完成签到,获得积分10
8秒前
狼主完成签到 ,获得积分10
9秒前
俏皮火完成签到 ,获得积分10
9秒前
齐桓公完成签到,获得积分10
10秒前
现代绮玉完成签到,获得积分10
10秒前
10秒前
小鬼完成签到,获得积分10
11秒前
11秒前
Kenina完成签到,获得积分10
12秒前
12秒前
莫等闲发布了新的文献求助10
12秒前
小鸭子完成签到,获得积分10
13秒前
划水火大王完成签到,获得积分10
14秒前
14秒前
情怀应助Superg采纳,获得10
14秒前
guoguo完成签到,获得积分20
14秒前
老北京发布了新的文献求助10
15秒前
风车完成签到,获得积分10
15秒前
crush_zyd完成签到,获得积分10
15秒前
程哲瀚完成签到,获得积分10
19秒前
追梦人2016完成签到 ,获得积分10
19秒前
gaochunjing完成签到,获得积分20
19秒前
小马甲应助科研通管家采纳,获得10
19秒前
20秒前
清爽的碧空完成签到,获得积分10
20秒前
orixero应助科研通管家采纳,获得10
20秒前
leftarrow发布了新的文献求助10
20秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167325
求助须知:如何正确求助?哪些是违规求助? 2818822
关于积分的说明 7922729
捐赠科研通 2478613
什么是DOI,文献DOI怎么找? 1320412
科研通“疑难数据库(出版商)”最低求助积分说明 632776
版权声明 602443