Automated surgical planning in spring-assisted sagittal craniosynostosis correction using finite element analysis and machine learning

颅骨成形术 颅缝病 矢状缝 有限元法 矢状面 手术计划 颅骨 颅缝 口腔正畸科 截骨术 医学 纤维接头 计算机科学 外科 工程类 结构工程 解剖
作者
Jenson Jacob,Selim Bozkurt
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:18 (11): e0294879-e0294879 被引量:2
标识
DOI:10.1371/journal.pone.0294879
摘要

Sagittal synostosis is a condition caused by the fused sagittal suture and results in a narrowed skull in infants. Spring-assisted cranioplasty is a correction technique used to expand skulls with sagittal craniosynostosis by placing compressed springs on the skull before six months of age. Proposed methods for surgical planning in spring-assisted sagittal craniosynostosis correction provide information only about the skull anatomy or require iterative finite element simulations. Therefore, the selection of surgical parameters such as spring dimensions and osteotomy sizes may remain unclear and spring-assisted cranioplasty may yield sub-optimal surgical results. The aim of this study is to develop the architectural structure of an automated tool to predict post-operative surgical outcomes in sagittal craniosynostosis correction with spring-assisted cranioplasty using machine learning and finite element analyses. Six different machine learning algorithms were tested using a finite element model which simulated a combination of various mechanical and geometric properties of the calvarium, osteotomy sizes, spring characteristics, and spring implantation positions. Also, a statistical shape model representing an average sagittal craniosynostosis calvarium in 5-month-old patients was used to assess the machine learning algorithms. XGBoost algorithm predicted post-operative cephalic index in spring-assisted sagittal craniosynostosis correction with high accuracy. Finite element simulations confirmed the prediction of the XGBoost algorithm. The presented architectural structure can be used to develop a tool to predict the post-operative cephalic index in spring-assisted cranioplasty in patients with sagittal craniosynostosis can be used to automate surgical planning and improve post-operative surgical outcomes in spring-assisted cranioplasty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xavier完成签到,获得积分10
1秒前
张真狗发布了新的文献求助10
1秒前
英姑应助赵柯宇采纳,获得10
2秒前
2秒前
落后的慕梅完成签到 ,获得积分10
2秒前
魏某某发布了新的文献求助10
2秒前
2秒前
2秒前
WSR发布了新的文献求助10
2秒前
阿南完成签到,获得积分10
3秒前
3秒前
十二月完成签到,获得积分10
3秒前
J_Man发布了新的文献求助10
3秒前
芽芽鸭发布了新的文献求助10
4秒前
4秒前
慕青应助胡亚辉采纳,获得10
4秒前
4秒前
粟粟发布了新的文献求助10
5秒前
朱罗娟完成签到,获得积分10
5秒前
6秒前
ding应助ljq采纳,获得10
6秒前
6秒前
6秒前
科研通AI6应助elang采纳,获得10
7秒前
打打应助Xavier采纳,获得10
7秒前
xxx完成签到,获得积分10
7秒前
zzzy发布了新的文献求助10
7秒前
8秒前
烂漫笑晴发布了新的文献求助10
8秒前
8秒前
魏某某完成签到,获得积分10
8秒前
8秒前
9秒前
wuyu完成签到,获得积分10
9秒前
9秒前
RICK发布了新的文献求助10
9秒前
清梦发布了新的文献求助10
9秒前
马里奥发布了新的文献求助10
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
MARCH'S ADVANCED ORGANIC CHEMISTRY REACTIONS, MECHANISMS, AND STRUCTURE 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5085703
求助须知:如何正确求助?哪些是违规求助? 4301785
关于积分的说明 13405360
捐赠科研通 4126726
什么是DOI,文献DOI怎么找? 2260000
邀请新用户注册赠送积分活动 1264125
关于科研通互助平台的介绍 1198313