细度
材料科学
流变学
钙矾石
水滑石
化学工程
熔渣(焊接)
磷石膏
城市固体废物
粒径
冶金
废物管理
矿物学
水泥
复合材料
化学
硅酸盐水泥
原材料
有机化学
工程类
催化作用
作者
Junchen Xiang,Jingping Qiu,Yunqi Zhao,Pangkun Zheng,Haonan Peng,Xunchang Fei
标识
DOI:10.1016/j.cemconcomp.2023.105418
摘要
The utilization of multiple solid-waste-activated slags to prepare clinker-free binders has garnered considerable interest due to their environmental friendliness and low cost. In this study, a novel binder was developed by incorporating multiple solid wastes, namely red mud (RM), carbide slag (CS), phosphogypsum (PG), and coal gasification slag (CGS). RM, CS, and PG were used as activators to synergistically activate two kinds of ultra-fine CGS precursors with median particle sizes of 5.2 μm and 6.1 μm, respectively. The effects of parameters including precursor fineness and activator dosage were systematically investigated. The hydration products were then characterized to elucidate the activation mechanism. The results showed that the rheology of the pastes fitted well with Herschel-Bulkley model, exhibiting shear thinning behavior regardless of the proportion of the activators. The low CGS fineness and high PG dosage reduced viscosity, yield stress, and shear stress of the pastes. Fine CGS particles were found to shorten the hydration dormancy period and accelerate the appearance of the second exothermic peak, thus promoting strength development. CGS with small particles facilitated the formation of ettringite but restricted hydrotalcite generation. This study reported a binder utilizing full solid wastes and confirmed its feasibility as a sustainable alternative in construction applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI