Privacy-Preserving AI Framework for 6G-Enabled Consumer Electronics

数码产品 计算机科学 工程类 电气工程
作者
Xin Wang,Jianhui Lyu,J. Dinesh Peter,Byung‐Gyu Kim
出处
期刊:IEEE Transactions on Consumer Electronics [Institute of Electrical and Electronics Engineers]
卷期号:70 (1): 3940-3950
标识
DOI:10.1109/tce.2024.3371928
摘要

In the realm of consumer electronics for 6G communication, AI has emerged as a significant player. However, the proliferation of devices at the edge of network causes the generation of extensive multimodal data, encompassing user behavior records, audio, and video. The influx of data poses fresh challenges concerning security and privacy. Consequently, there has been a surge in research and the implementation of AI-driven methods to protect privacy in response to these challenges. A differential privacy federated learning framework with adaptive clipping, which uses Gaussian mechanism, is proposed to mitigate privacy issue. Simultaneously, conventional federated learning depends on a centralized server and is susceptible to single points of failure and malicious node attacks. The explicit transmission of intermediate parameters can lead to the inference of private data. Therefore, a federated learning model based on blockchain is proposed to enhance decentralization, security, and fairness. Results demonstrate that the proposed framework achieves more accurate results than centralized federated learning, decentralized wireless federated learning, fused real-time sequential deep extreme learning machine, and federated learning combined with blockchain and local differential privacy, increasing the classification accuracy by 13.25%, reducing the training loss, training time, and communication overhead by 28.36%, 51.73%, and 61.44% respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助隐形铃铛采纳,获得10
1秒前
麋鹿完成签到,获得积分10
1秒前
sutychen发布了新的文献求助10
1秒前
3秒前
852应助iii采纳,获得10
3秒前
李爱国应助顺利紫山采纳,获得10
3秒前
脆皮鱼完成签到 ,获得积分10
3秒前
华仔应助YZzzJ采纳,获得10
4秒前
4秒前
4秒前
DONGmumu完成签到,获得积分10
5秒前
yx完成签到,获得积分10
5秒前
活力寻菱完成签到 ,获得积分10
5秒前
5秒前
负责的雪碧完成签到,获得积分10
5秒前
阿乔完成签到,获得积分10
6秒前
共享精神应助zl采纳,获得10
6秒前
花落发布了新的文献求助20
6秒前
十七完成签到,获得积分10
6秒前
DanWu完成签到,获得积分10
7秒前
7秒前
鑫光熠熠完成签到 ,获得积分10
7秒前
keyantong666完成签到,获得积分10
7秒前
iAlvinz完成签到,获得积分10
7秒前
精明的不乐完成签到,获得积分10
7秒前
weirdo完成签到,获得积分10
7秒前
7秒前
左丘傲菡发布了新的文献求助10
8秒前
吃鱼硕完成签到,获得积分10
9秒前
9秒前
识途完成签到,获得积分10
9秒前
10秒前
紫罗兰花海完成签到 ,获得积分10
10秒前
微笑的冰之完成签到,获得积分10
10秒前
cai发布了新的文献求助10
10秒前
夜斗发布了新的文献求助10
10秒前
xixi完成签到,获得积分20
11秒前
11秒前
天天快乐应助薄荷浅夏采纳,获得10
11秒前
道以文完成签到 ,获得积分10
11秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143174
求助须知:如何正确求助?哪些是违规求助? 2794297
关于积分的说明 7810446
捐赠科研通 2450505
什么是DOI,文献DOI怎么找? 1303862
科研通“疑难数据库(出版商)”最低求助积分说明 627081
版权声明 601384