Reparameterization Causal Convolutional Network for Automatic Modulation Classification

计算机科学 调制(音乐) 人工智能 卷积神经网络 机器学习 物理 声学
作者
Ning Tang,Xiaoyu Wang,Fei Zhou,Shengyu Tang,Yaohui Lyu
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (6): 8576-8583 被引量:1
标识
DOI:10.1109/tvt.2024.3361928
摘要

With the proliferation of wireless technologies in vehicular networks, robust automatic modulation classification (AMC) has become crucial for optimizing spectrum utilization and maintaining reliability. However, AMC in dynamic vehicular channels poses significant challenges for traditional machine learning techniques. This paper proposes a novel CNN-based approach named Reparameterization Causal Convolutional Network (RepCCNet) to achieve highly accurate and noise-robust AMC performance. RepCCNet incorporates causal convolutions and structural reparameterization techniques to extract long-term time-domain features. A bottleneck structure with channel attention dynamically calibrates feature channels, retaining only helpful information. Multi-sample dropout is integrated during training to improve generalization capability. We demonstrate RepCCNet's state-of-the-art classification accuracy on the two widely used datasets, RadioML 2016.10a and RadioML 2018.01a, across varying signal-to-noise ratios. Compared to existing methods, RepCCNet achieves highly competitive results compared to state-of-the-art approaches, utilizing fewer than 40k parameters. Ablation studies validate the contributions of the proposed architectural innovations. This work represents a significant advancement toward developing deep learning solutions for robust wireless signal classification tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助无奈青枫采纳,获得10
1秒前
1秒前
ramon发布了新的文献求助10
2秒前
2秒前
2秒前
Akim应助西子阳采纳,获得10
2秒前
JamesPei应助abtx314采纳,获得10
3秒前
nene发布了新的文献求助10
5秒前
金金完成签到,获得积分10
5秒前
Hello应助ahui采纳,获得10
5秒前
墙头的草完成签到,获得积分20
5秒前
标致电源完成签到,获得积分10
6秒前
受伤问凝完成签到 ,获得积分10
6秒前
123完成签到,获得积分10
6秒前
缓慢的可乐完成签到,获得积分10
7秒前
7秒前
王琨程发布了新的文献求助10
7秒前
思源应助西子阳采纳,获得10
7秒前
8秒前
8秒前
BK_发布了新的文献求助10
9秒前
honey发布了新的文献求助10
9秒前
Co完成签到 ,获得积分10
12秒前
柳娅茹发布了新的文献求助10
12秒前
abcdefg完成签到,获得积分10
12秒前
斯文败类应助km198964650采纳,获得10
13秒前
852应助西子阳采纳,获得10
14秒前
猪猪hero应助小仙女212采纳,获得10
14秒前
奥特超曼应助小仙女212采纳,获得10
14秒前
mariawang发布了新的文献求助20
14秒前
慕青应助是我本人采纳,获得10
14秒前
18秒前
CTtoF发布了新的文献求助10
20秒前
花小北完成签到 ,获得积分10
21秒前
ioio发布了新的文献求助10
21秒前
21秒前
22秒前
天天快乐应助简单小熊猫采纳,获得10
22秒前
天天快乐应助温柔沛槐采纳,获得10
23秒前
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998421
求助须知:如何正确求助?哪些是违规求助? 3537865
关于积分的说明 11272824
捐赠科研通 3276939
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883818
科研通“疑难数据库(出版商)”最低求助积分说明 810014