亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel framework combining band selection algorithm and improved 3D prototypical network for tree species classification using airborne hyperspectral images

高光谱成像 选择(遗传算法) 人工智能 模式识别(心理学) 树(集合论) 计算机科学 遥感 算法 数据挖掘 机器学习 数学 地理 组合数学
作者
Wu Jing,Long Chen,Jiaqi Wang,Yunfan Li,Erxue Chen,Xiaoli Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:219: 108813-108813 被引量:1
标识
DOI:10.1016/j.compag.2024.108813
摘要

Fine-grained identification of forest types and tree species represents a critical aspect of forest resource inventory and monitoring. The use of airborne hyperspectral remote sensing imagery stands out for its ability to finely differentiate among tree species, leveraging its exceptional spatial resolution and rich spectral details. However, this approach is limited by several challenges (e.g., high spectral correlation and information redundancy). In accordance, the adoption of a lightweight deep learning approach in the form of a few-shot learning model can effectively resolve the challenges of multi-forest tree species classification. Therefore, integrating a data dimensionality reduction algorithm with a few-shot classification model presents a promising avenue for resolving the fine-grained classification of forest tree species. In this study, we propose the innovative classification framework FAST 3D-CNN P-Net. This framework utilizes CNN for band selection, enhances the fine-grained identification process in hyperspectral data, and integrates an optimized FAST 3D-CNN into the P-Net classifier (a few-shot classifier). First, a CNN-based band selection method is employed to learn the nonlinear dependencies between spectral bands, assign weights to rank the bands, and reconstruct the global spectral information using the most informative bands. It then constructs a novel classification model, designated FAST 3D-CNN P-Net, through the integration of an optimal 3D-CNN with a prototypical network. To enhance classification performance, the FAST 3D-CNN P-Net utilizes reconstructed hyperspectral images derived from the band selection results as input. The effectiveness of the proposed framework was assessed with the airborne GFF dataset and the widely accessible medium-resolution hyperspectral datasets, Indian Pines (IP) and Kennedy Space Center (KSC). The overall classification accuracy reached 98.33 % for the GFF dataset and 97.21 % and 99.43 % for the IP and KSC, respectively, exhibiting performance superiority compared to the standalone 3D-CNN classification network. This classification framework demonstrates efficiency in selecting a subset of hyperspectral bands with minimal redundancy, empowering the rapid and accurate classification and mapping of tree species in complicated, multi-species forest stands, even with a limited quantity of labeled samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HIMINNN完成签到,获得积分20
12秒前
19秒前
volvoamg发布了新的文献求助10
24秒前
GCD完成签到 ,获得积分10
33秒前
45秒前
1分钟前
1分钟前
1分钟前
1分钟前
bkagyin应助司徒无剑采纳,获得10
1分钟前
1分钟前
1分钟前
樱桃猴子应助秋天采纳,获得10
1分钟前
volvoamg发布了新的文献求助10
1分钟前
1分钟前
稻子完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
司徒无剑发布了新的文献求助10
2分钟前
2分钟前
lixuebin完成签到 ,获得积分10
2分钟前
2分钟前
华仔应助丰富曼青采纳,获得30
3分钟前
3分钟前
丰富曼青发布了新的文献求助30
3分钟前
3分钟前
太叔夜南完成签到,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
胡可完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
volvoamg发布了新的文献求助10
5分钟前
北国雪未消完成签到 ,获得积分10
5分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3562020
求助须知:如何正确求助?哪些是违规求助? 3135557
关于积分的说明 9412604
捐赠科研通 2835934
什么是DOI,文献DOI怎么找? 1558802
邀请新用户注册赠送积分活动 728467
科研通“疑难数据库(出版商)”最低求助积分说明 716878