球体
共聚物
自愈水凝胶
3D生物打印
侧链
高分子化学
材料科学
离子键合
聚合物
组织工程
化学工程
化学
生物医学工程
复合材料
有机化学
离子
医学
生物化学
体外
工程类
作者
Sofia Falia Saravanou,Konstantinos Ioannidis,Andreas Dimopoulos,Alexandra Paxinou,Fotoula Kounelaki,Sevilli Maria Varsami,Constantinos Tsitsilianis,Ioannis Papantoniou,George Pasparakis
标识
DOI:10.1016/j.carbpol.2023.120790
摘要
In this work a dual crosslinked network based on sodium alginate graft copolymer, bearing poly(N-isopropylacrylamide-co-N-tert-butylacrylamide) P(NIPAM-co-NtBAM) side chains was developed and examined as a shear thinning soft gelating bioink. The copolymer was found to undergo a two-step gelation mechanism; in the first step a three-dimensional (3D) network is formed through ionic interactions between the negatively ionized carboxylic groups of the alginate backbone and the positive charges of Ca2+ divalent cations, according to the “egg-box” mechanism. The second gelation step occurs upon heating which triggers the hydrophobic association of the thermoresponsive P(NIPAM-co-NtBAM) side chains, increasing the network crosslinking density in a highly cooperative manner. Interestingly, the dual crosslinking mechanism resulted in a five-to-eight-fold improvement of the storage modulus implying reinforced hydrophobic crosslinking above the critical thermo-gelation temperature which is further boosted by the ionic crosslinking of the alginate backbone. The proposed bioink could form arbitrary geometries under mild 3D printing conditions. Last, it is demonstrated that the proposed developed bioink can be further utilized as bioprinting ink and showcased its ability to promote human periosteum derived cells (hPDCs) growth in 3D and their capacity to form 3D spheroids. In conclusion, the bioink, owing its ability to reverse thermally the crosslinking of its polymer network, can be further utilized for the facile recovery of the cell spheroids, implying its promising potential use as cell spheroid-forming template bionk for applications in 3D biofabrication.
科研通智能强力驱动
Strongly Powered by AbleSci AI