Deep Learning for Head and Neck CT Angiography: Stenosis and Plaque Classification

医学 狭窄 放射科 血管造影 头颈部 外科
作者
Fan Fu,Yi Shan,Guang Yang,Chao Zheng,Miao Zhang,Dongdong Rong,Ximing Wang,Jie Lu
出处
期刊:Radiology [Radiological Society of North America]
卷期号:307 (3) 被引量:22
标识
DOI:10.1148/radiol.220996
摘要

Background Studies have rarely investigated stenosis detection from head and neck CT angiography scans because accurate interpretation is time consuming and labor intensive. Purpose To develop an automated convolutional neural network-based method for accurate stenosis detection and plaque classification in head and neck CT angiography images and compare its performance with that of radiologists. Materials and Methods A deep learning (DL) algorithm was constructed and trained with use of head and neck CT angiography images that were collected retrospectively from four tertiary hospitals between March 2020 and July 2021. CT scans were partitioned into training, validation, and independent test sets at a ratio of 7:2:1. An independent test set of CT angiography scans was collected prospectively between October 2021 and December 2021 in one of the four tertiary centers. Stenosis grade categories were as follows: mild stenosis (<50%), moderate stenosis (50%-69%), severe stenosis (70%-99%), and occlusion (100%). The stenosis diagnosis and plaque classification of the algorithm were compared with the ground truth of consensus by two radiologists (with more than 10 years of experience). The performance of the models was analyzed in terms of accuracy, sensitivity, specificity, and areas under the receiver operating characteristic curve. Results There were 3266 patients (mean age ± SD, 62 years ± 12; 2096 men) evaluated. The consistency between radiologists and the DL-assisted algorithm on plaque classification was 85.6% (320 of 374 cases [95% CI: 83.2, 88.6]) on a per-vessel basis. Moreover, the artificial intelligence model assisted in visual assessment, such as increasing confidence in the degree of stenosis. This reduced the time needed for diagnosis and report writing of radiologists from 28.8 minutes ± 5.6 to 12.4 minutes ± 2.0 (P < .001). Conclusion A deep learning algorithm for head and neck CT angiography interpretation accurately determined vessel stenosis and plaque classification and had equivalent diagnostic performance when compared with experienced radiologists. © RSNA, 2023 Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
张宝发布了新的文献求助10
1秒前
聪明的凝丹完成签到,获得积分10
1秒前
何必不曾完成签到,获得积分10
1秒前
李爱国应助DW采纳,获得10
2秒前
3秒前
羊角包发布了新的文献求助10
4秒前
5秒前
何必不曾发布了新的文献求助20
6秒前
6秒前
Jane发布了新的文献求助30
6秒前
joeay发布了新的文献求助10
8秒前
0℃发布了新的文献求助10
9秒前
木木发布了新的文献求助10
9秒前
asadsdas发布了新的文献求助10
12秒前
piooo发布了新的文献求助10
14秒前
14秒前
hyaoooo完成签到 ,获得积分10
14秒前
华仔应助隐形的雪碧采纳,获得30
15秒前
16秒前
16秒前
99411完成签到 ,获得积分10
16秒前
19秒前
0℃完成签到,获得积分10
19秒前
19秒前
joeay完成签到 ,获得积分10
19秒前
土豆淀粉发布了新的文献求助10
20秒前
HY发布了新的文献求助10
20秒前
坚定的骁完成签到,获得积分10
21秒前
飘逸若蕊完成签到,获得积分20
22秒前
kiki发布了新的文献求助10
22秒前
小木子发布了新的文献求助10
24秒前
安静静槐发布了新的文献求助10
24秒前
xuxingjie发布了新的文献求助10
24秒前
fff完成签到,获得积分10
25秒前
在水一方应助赵佳璐采纳,获得10
25秒前
丘比特应助DW采纳,获得10
25秒前
小二郎应助kang12采纳,获得10
25秒前
27秒前
科研通AI2S应助南鸢采纳,获得10
28秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161454
求助须知:如何正确求助?哪些是违规求助? 2812813
关于积分的说明 7897283
捐赠科研通 2471758
什么是DOI,文献DOI怎么找? 1316122
科研通“疑难数据库(出版商)”最低求助积分说明 631180
版权声明 602112