医学
中性粒细胞胞外陷阱
免疫系统
癌症研究
脂多糖
免疫疗法
PI3K/AKT/mTOR通路
放射治疗
免疫学
细胞外
基底细胞
蛋白激酶B
炎症
病理
信号转导
内科学
生物
细胞生物学
标识
DOI:10.1177/10732748231159313
摘要
Background: The current standards of treatment for oral squamous cell carcinoma (OSCC) include surgery, radiotherapy, and chemotherapy. In recent years, research on the effectiveness of immunotherapy in the treatment of OSCC has also been conducted.Purpose: Studies indicate that nonspecific immune mechanisms involved in the course of the anticancer response also need to be taken into account.Research Design: This review summarizes the results of our research on the active participation of neutrophils, which are previously underestimated, in the antitumor response in the course of OSCC, taking into account the ability of these cells to generate neutrophil extracellular traps (NETs).Results: We proved that the formation of NETs accompanies not only inflammatory changes but also the neoplastic process and that lipopolysaccharide (LPS) or interleukin 17 (IL-17) plays a critical role in inducing the formation of NETs during the OSCC. The greatest achievement of our published findings was the demonstration of the formation and release of NETs from neutrophils cocultured with tumor cells, as well as after stimulation with supernatant from the SCC culture with a PI3K-independent Akt kinase activation mechanism. Moreover, the pioneering achievement of our studies was the localization of NET structures in the tumor tissue, as well as the observation of high concentrations of NET markers in the serum of OSCC patients with low concentrations in the saliva, indicating the differences in the course of immune response between the periphery and the local reactions.Conclusions: The data presented here provide surprising but important information on the role of NETs in the course of OSCC, thus pointing to a promising new direction in the development of management strategies for early noninvasive diagnosis and monitoring of the disease course, and perhaps immunotherapy. Furthermore, this review raises further questions and elaborates on the process of NETosis in cancer.
科研通智能强力驱动
Strongly Powered by AbleSci AI