类有机物
肺
祖细胞
细胞生物学
呼吸上皮
干细胞
生物
电池类型
人口
细胞培养
病理
免疫学
细胞
医学
内科学
环境卫生
遗传学
作者
Syahidatulamali Che Shaffi,Norashikin Zakaria,Nur Shuhaidatul Sarmiza Abdul Halim,Anan A. Ishtiah,Azim Patar,Badrul Hisham Yahaya
标识
DOI:10.1007/5584_2023_767
摘要
The lung is a complex organ composed of numerous cell types. Exposure to air pollutants, cigarette smoke, bacteria, viruses, and many others may cause injury to the epithelial cells that line the conducting airways and alveoli. Organoids are the 3D self-organising structures grown from stem cells and generated from adult stem and progenitor cells. Lung organoids are fascinating tools to investigate human lung development in vitro. The objective of this study was to establish a rapid method for generating lung organoids with a direct culture strategy.Trachea and lung organoids were derived from mixed cell populations of mice primary airway epithelial cells, fibroblasts, and lung microvascular endothelial cells and directly digested from the whole cell population in the distal lung.The formation of spheres appeared as early as 3 days and continued to proliferate until day 5. The generation of trachea and lung organoids self-organised into discrete epithelial structures was formed within less than 10 days.We conclude that researchers will be able to examine cellular involvement during organ formation and molecular networks because organoids come in a variety of morphologies and stages of development, and this organoid protocol may be used for modelling lung diseases as a platform for therapeutic purposes and suitable for personalised medicine for respiratory diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI