平面度测试
位阻效应
材料科学
噻吩
电子受体
接受者
聚噻吩
分子
光化学
立体化学
结晶学
聚合物
有机化学
化学
导电聚合物
物理
复合材料
凝聚态物理
作者
Zi Li,Huifeng Yao,Wenxuan Wang,Chang Eun Song,Du Hyeon Ryu,Xiao Yang,Jingwen Wang,Lijiao Ma,Tao Zhang,Junzhen Ren,Cunbin An,Won Suk Shin,Jianhui Hou
标识
DOI:10.1021/acsami.3c01194
摘要
Designing efficient non-fused ring electron acceptors is of great importance in decreasing the material cost of organic photovoltaic cells (OPVs). It is a challenge to construct a planar molecular skeleton in non-fused molecules as there are many torsions between adjacent units. Here, we design two non-fused electron acceptors based on bithieno[3,2-b]thiophene units as core structures and study the impact of steric hindrance of substituents on molecular planarity. We use 2,4,6-triisopropylphenyl and 4-hexylphenyl groups to prepare ATTP-1 and ATTP-2, respectively. Our results suggest that the enhanced steric hindrance is beneficial for obtaining a more planar molecular configuration, which significantly increases the optical absorption and charge transport properties. The power conversion efficiency (PCE) of PBDB-TF:ATTP-1 combination (11.3%) is superior to that of PBDB-TF:ATTP-2 combination (3.7%). In addition, an impressive PCE of 10.7% is recorded in ATTP-1-based devices when a low-cost polythiophene donor PDCBT is used, which is an outstanding value in OPVs fabricated by non-fused donor/acceptor combinations. Our work demonstrates that modulation of the steric hindrance effect is of great significance to control the molecular planarity and thus obtain excellent photovoltaic performance of low-cost non-fused electron acceptors.
科研通智能强力驱动
Strongly Powered by AbleSci AI