Large Steric Hindrance Enhanced Molecular Planarity for Low-Cost Non-Fused Electron Acceptors

平面度测试 位阻效应 材料科学 噻吩 电子受体 接受者 聚噻吩 分子 光化学 立体化学 结晶学 聚合物 有机化学 化学 导电聚合物 物理 复合材料 凝聚态物理
作者
Zi Li,Huifeng Yao,Wenxuan Wang,Chang Eun Song,Du Hyeon Ryu,Xiao Yang,Jingwen Wang,Lijiao Ma,Tao Zhang,Junzhen Ren,Cunbin An,Won Suk Shin,Jianhui Hou
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (13): 16801-16808 被引量:5
标识
DOI:10.1021/acsami.3c01194
摘要

Designing efficient non-fused ring electron acceptors is of great importance in decreasing the material cost of organic photovoltaic cells (OPVs). It is a challenge to construct a planar molecular skeleton in non-fused molecules as there are many torsions between adjacent units. Here, we design two non-fused electron acceptors based on bithieno[3,2-b]thiophene units as core structures and study the impact of steric hindrance of substituents on molecular planarity. We use 2,4,6-triisopropylphenyl and 4-hexylphenyl groups to prepare ATTP-1 and ATTP-2, respectively. Our results suggest that the enhanced steric hindrance is beneficial for obtaining a more planar molecular configuration, which significantly increases the optical absorption and charge transport properties. The power conversion efficiency (PCE) of PBDB-TF:ATTP-1 combination (11.3%) is superior to that of PBDB-TF:ATTP-2 combination (3.7%). In addition, an impressive PCE of 10.7% is recorded in ATTP-1-based devices when a low-cost polythiophene donor PDCBT is used, which is an outstanding value in OPVs fabricated by non-fused donor/acceptor combinations. Our work demonstrates that modulation of the steric hindrance effect is of great significance to control the molecular planarity and thus obtain excellent photovoltaic performance of low-cost non-fused electron acceptors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
人机一号发布了新的文献求助10
1秒前
2秒前
高强完成签到,获得积分10
2秒前
3秒前
烟花应助panpan采纳,获得10
3秒前
cen完成签到,获得积分10
3秒前
蛇虫鼠蚁发布了新的文献求助10
3秒前
wly发布了新的文献求助10
4秒前
4秒前
科研绿老头完成签到 ,获得积分10
4秒前
4秒前
高强发布了新的文献求助10
5秒前
小小完成签到,获得积分20
6秒前
YoYoojaejae发布了新的文献求助30
6秒前
cen发布了新的文献求助10
7秒前
8秒前
Lucas应助人木采纳,获得10
8秒前
Rita应助追寻的元灵采纳,获得10
9秒前
9秒前
bear熊发布了新的文献求助10
9秒前
钟旭完成签到,获得积分10
9秒前
优秀醉易完成签到,获得积分10
10秒前
占那个发布了新的文献求助30
11秒前
11秒前
贼肉完成签到,获得积分10
12秒前
瓜酱酱完成签到,获得积分10
12秒前
钟旭发布了新的文献求助10
13秒前
加菲丰丰应助研友_nPol2L采纳,获得10
13秒前
啾啾zZ完成签到 ,获得积分10
14秒前
ZMK完成签到 ,获得积分10
14秒前
贼肉发布了新的文献求助10
14秒前
小蘑菇应助王美贤采纳,获得10
14秒前
tdd应助自信搬砖采纳,获得10
14秒前
bear熊完成签到,获得积分10
16秒前
18秒前
Hello应助懵懂的灭男采纳,获得10
19秒前
20秒前
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149723
求助须知:如何正确求助?哪些是违规求助? 2800743
关于积分的说明 7841670
捐赠科研通 2458302
什么是DOI,文献DOI怎么找? 1308386
科研通“疑难数据库(出版商)”最低求助积分说明 628498
版权声明 601706