Multi-Modal 3D Object Detection in Autonomous Driving: A Survey and Taxonomy

计算机科学 情态动词 目标检测 人工智能 分类 传感器融合 保险丝(电气) 特征(语言学) 代表(政治) 对象(语法) 计算机视觉 融合 数据挖掘 模式识别(心理学) 工程类 哲学 化学 高分子化学 法学 电气工程 政治 语言学 政治学
作者
Li Wang,Xinyu Zhang,Ziying Song,Jiangfeng Bi,Guoxin Zhang,Haiyue Wei,Liyao Tang,Lei Yang,Jun Li,Caiyan Jia,Lijun Zhao
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:8 (7): 3781-3798 被引量:170
标识
DOI:10.1109/tiv.2023.3264658
摘要

Autonomous vehicles require constant environmental perception to obtain the distribution of obstacles to achieve safe driving. Specifically, 3D object detection is a vital functional module as it can simultaneously predict surrounding objects' categories, locations, and sizes. Generally, autonomous vehicles are equipped with multiple sensors, including cameras and LiDARs. The fact that single-modal methods suffer from unsatisfactory detection performance motivates utilizing multiple modalities as inputs to compensate for single sensor faults. Although many multi-modal fusion detection algorithms exist, there is still a lack of comprehensive and in-depth analysis of these methods to clarify how to fuse multi-modal data effectively. Therefore, this paper surveys recent advancements in fusion detection methods. First, we present the broad background of multi-modal 3D object detection and identify the characteristics of widely used datasets along with their evaluation metrics. Second, instead of the traditional classification method of early, middle, and late fusion, we categorize and analyze all fusion methods from three aspects: feature representation, alignment, and fusion, which reveals how these fusion methods are implemented in an essential way. Third, we provide an in-depth comparison of their pros and cons and compare their performance in mainstream datasets. Finally, we further summarize current challenges and research trends for realizing the full potential of multi-modal 3D object detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zyc发布了新的文献求助10
1秒前
隐形曼青应助唐棠采纳,获得10
1秒前
Nico发布了新的文献求助10
1秒前
3秒前
3秒前
3秒前
4秒前
Diaory2023完成签到 ,获得积分0
4秒前
古或今完成签到,获得积分10
7秒前
完美世界应助老财萌萌哒采纳,获得10
8秒前
活力的小蜜蜂完成签到,获得积分10
8秒前
楼明轩发布了新的文献求助10
10秒前
狂野的雨灵完成签到,获得积分10
10秒前
朱冰洁发布了新的文献求助20
11秒前
传奇3应助ylyla采纳,获得10
11秒前
现代的擎苍完成签到,获得积分10
12秒前
13秒前
qqs发布了新的文献求助10
13秒前
英俊的铭应助榴莲麦旋风采纳,获得10
13秒前
天真傲之完成签到,获得积分10
15秒前
16秒前
王思琦发布了新的文献求助10
16秒前
xiao茗发布了新的文献求助10
17秒前
七七完成签到,获得积分10
17秒前
18秒前
yixiaoqi完成签到,获得积分10
18秒前
19秒前
19秒前
Bob完成签到,获得积分10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
丘比特应助科研通管家采纳,获得30
19秒前
助人为乐应助科研通管家采纳,获得10
19秒前
丘比特应助科研通管家采纳,获得10
19秒前
今后应助科研通管家采纳,获得10
19秒前
打打应助科研通管家采纳,获得10
19秒前
852应助科研通管家采纳,获得20
19秒前
无花果应助科研通管家采纳,获得30
20秒前
北北北应助科研通管家采纳,获得10
20秒前
NexusExplorer应助科研通管家采纳,获得10
20秒前
无极微光应助科研通管家采纳,获得30
20秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457257
求助须知:如何正确求助?哪些是违规求助? 4563784
关于积分的说明 14291191
捐赠科研通 4488397
什么是DOI,文献DOI怎么找? 2458513
邀请新用户注册赠送积分活动 1448564
关于科研通互助平台的介绍 1424214