Multi-Modal 3D Object Detection in Autonomous Driving: A Survey and Taxonomy

计算机科学 情态动词 目标检测 人工智能 分类 传感器融合 保险丝(电气) 特征(语言学) 代表(政治) 对象(语法) 计算机视觉 融合 数据挖掘 模式识别(心理学) 工程类 哲学 化学 高分子化学 法学 电气工程 政治 语言学 政治学
作者
Li Wang,Xinyu Zhang,Ziying Song,Jiangfeng Bi,Guoxin Zhang,Haiyue Wei,Liyao Tang,Lei Yang,Jun Li,Caiyan Jia,Lijun Zhao
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:8 (7): 3781-3798 被引量:170
标识
DOI:10.1109/tiv.2023.3264658
摘要

Autonomous vehicles require constant environmental perception to obtain the distribution of obstacles to achieve safe driving. Specifically, 3D object detection is a vital functional module as it can simultaneously predict surrounding objects' categories, locations, and sizes. Generally, autonomous vehicles are equipped with multiple sensors, including cameras and LiDARs. The fact that single-modal methods suffer from unsatisfactory detection performance motivates utilizing multiple modalities as inputs to compensate for single sensor faults. Although many multi-modal fusion detection algorithms exist, there is still a lack of comprehensive and in-depth analysis of these methods to clarify how to fuse multi-modal data effectively. Therefore, this paper surveys recent advancements in fusion detection methods. First, we present the broad background of multi-modal 3D object detection and identify the characteristics of widely used datasets along with their evaluation metrics. Second, instead of the traditional classification method of early, middle, and late fusion, we categorize and analyze all fusion methods from three aspects: feature representation, alignment, and fusion, which reveals how these fusion methods are implemented in an essential way. Third, we provide an in-depth comparison of their pros and cons and compare their performance in mainstream datasets. Finally, we further summarize current challenges and research trends for realizing the full potential of multi-modal 3D object detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
努力考博完成签到,获得积分10
刚刚
donglimuxue发布了新的文献求助10
刚刚
1秒前
3秒前
4秒前
英俊的铭应助生动友容采纳,获得10
4秒前
ding应助山花花采纳,获得10
5秒前
sw123完成签到 ,获得积分10
6秒前
周文凯发布了新的文献求助10
7秒前
7秒前
7秒前
9秒前
啊啊啊啊发布了新的文献求助10
9秒前
CipherSage应助怂宝儿采纳,获得10
10秒前
忧郁忆枫完成签到 ,获得积分10
10秒前
小甑完成签到,获得积分10
11秒前
香蕉诗蕊举报积极晓山求助涉嫌违规
11秒前
11秒前
诺hn完成签到 ,获得积分10
11秒前
酷波er应助伯克利芙蓉王采纳,获得10
12秒前
所所应助包振宏采纳,获得10
12秒前
朱加德发布了新的文献求助10
12秒前
樱桃发布了新的文献求助10
14秒前
学术妙蛙种子完成签到,获得积分20
14秒前
蔡丽发布了新的文献求助10
16秒前
17秒前
顺顺发布了新的文献求助10
17秒前
科目三应助樱桃采纳,获得10
21秒前
袁瑞发布了新的文献求助10
22秒前
akko完成签到,获得积分10
22秒前
珺珺要努力呀完成签到 ,获得积分10
24秒前
yfxf应助akko采纳,获得10
26秒前
27秒前
27秒前
顾矜应助朱加德采纳,获得10
28秒前
29秒前
量子星尘发布了新的文献求助10
29秒前
宋二庆完成签到,获得积分10
30秒前
青火完成签到,获得积分10
31秒前
zj发布了新的文献求助10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538014
求助须知:如何正确求助?哪些是违规求助? 4625297
关于积分的说明 14595495
捐赠科研通 4565819
什么是DOI,文献DOI怎么找? 2502789
邀请新用户注册赠送积分活动 1481135
关于科研通互助平台的介绍 1452360