Multi-Modal 3D Object Detection in Autonomous Driving: A Survey and Taxonomy

计算机科学 情态动词 目标检测 人工智能 分类 传感器融合 保险丝(电气) 特征(语言学) 代表(政治) 对象(语法) 计算机视觉 融合 数据挖掘 模式识别(心理学) 工程类 语言学 化学 哲学 政治 法学 高分子化学 政治学 电气工程
作者
Li Wang,Xinyu Zhang,Ziying Song,Jiangfeng Bi,Guoxin Zhang,Haiyue Wei,Liyao Tang,Lei Yang,Jun Li,Caiyan Jia,Lijun Zhao
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:8 (7): 3781-3798 被引量:97
标识
DOI:10.1109/tiv.2023.3264658
摘要

Autonomous vehicles require constant environmental perception to obtain the distribution of obstacles to achieve safe driving. Specifically, 3D object detection is a vital functional module as it can simultaneously predict surrounding objects' categories, locations, and sizes. Generally, autonomous vehicles are equipped with multiple sensors, including cameras and LiDARs. The fact that single-modal methods suffer from unsatisfactory detection performance motivates utilizing multiple modalities as inputs to compensate for single sensor faults. Although many multi-modal fusion detection algorithms exist, there is still a lack of comprehensive and in-depth analysis of these methods to clarify how to fuse multi-modal data effectively. Therefore, this paper surveys recent advancements in fusion detection methods. First, we present the broad background of multi-modal 3D object detection and identify the characteristics of widely used datasets along with their evaluation metrics. Second, instead of the traditional classification method of early, middle, and late fusion, we categorize and analyze all fusion methods from three aspects: feature representation, alignment, and fusion, which reveals how these fusion methods are implemented in an essential way. Third, we provide an in-depth comparison of their pros and cons and compare their performance in mainstream datasets. Finally, we further summarize current challenges and research trends for realizing the full potential of multi-modal 3D object detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文静的紫萱完成签到,获得积分10
刚刚
追寻的城完成签到,获得积分10
1秒前
皇帝的床帘完成签到,获得积分10
1秒前
大模型应助浅色墨水采纳,获得10
3秒前
4秒前
Jasper应助淡定幻翠采纳,获得10
4秒前
5秒前
爱喝冰可乐完成签到,获得积分10
7秒前
7秒前
搞怪莫茗应助科研通管家采纳,获得10
10秒前
10秒前
千跃应助科研通管家采纳,获得10
10秒前
扎心应助科研通管家采纳,获得10
10秒前
花生仔应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
10秒前
10秒前
SYLH应助科研通管家采纳,获得10
10秒前
wu8577应助科研通管家采纳,获得10
10秒前
情怀应助科研通管家采纳,获得10
10秒前
花生仔应助科研通管家采纳,获得10
10秒前
10秒前
hhh发布了新的文献求助10
11秒前
yuyu发布了新的文献求助10
11秒前
11秒前
xuanxuan1205发布了新的文献求助10
14秒前
浅色墨水发布了新的文献求助10
15秒前
Jasper应助李荣耀采纳,获得100
16秒前
SciGPT应助儒雅的悟空采纳,获得10
16秒前
17秒前
静越发布了新的文献求助10
18秒前
18秒前
半截神经病完成签到,获得积分10
18秒前
玛琪玛小姐的狗完成签到,获得积分10
20秒前
lmj717完成签到,获得积分10
22秒前
科学怪人发布了新的文献求助30
24秒前
hh发布了新的文献求助10
24秒前
汉堡包应助uuunnn采纳,获得10
24秒前
25秒前
26秒前
李荣耀发布了新的文献求助100
30秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962475
求助须知:如何正确求助?哪些是违规求助? 3508497
关于积分的说明 11141410
捐赠科研通 3241254
什么是DOI,文献DOI怎么找? 1791445
邀请新用户注册赠送积分活动 872863
科研通“疑难数据库(出版商)”最低求助积分说明 803417