Multi-Modal 3D Object Detection in Autonomous Driving: A Survey and Taxonomy

计算机科学 情态动词 目标检测 人工智能 分类 传感器融合 保险丝(电气) 特征(语言学) 代表(政治) 对象(语法) 计算机视觉 融合 数据挖掘 模式识别(心理学) 工程类 语言学 化学 哲学 政治 法学 高分子化学 政治学 电气工程
作者
Li Wang,Xinyu Zhang,Ziying Song,Jiangfeng Bi,Guoxin Zhang,Haiyue Wei,Liyao Tang,Lei Yang,Jun Li,Caiyan Jia,Lijun Zhao
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:8 (7): 3781-3798 被引量:97
标识
DOI:10.1109/tiv.2023.3264658
摘要

Autonomous vehicles require constant environmental perception to obtain the distribution of obstacles to achieve safe driving. Specifically, 3D object detection is a vital functional module as it can simultaneously predict surrounding objects' categories, locations, and sizes. Generally, autonomous vehicles are equipped with multiple sensors, including cameras and LiDARs. The fact that single-modal methods suffer from unsatisfactory detection performance motivates utilizing multiple modalities as inputs to compensate for single sensor faults. Although many multi-modal fusion detection algorithms exist, there is still a lack of comprehensive and in-depth analysis of these methods to clarify how to fuse multi-modal data effectively. Therefore, this paper surveys recent advancements in fusion detection methods. First, we present the broad background of multi-modal 3D object detection and identify the characteristics of widely used datasets along with their evaluation metrics. Second, instead of the traditional classification method of early, middle, and late fusion, we categorize and analyze all fusion methods from three aspects: feature representation, alignment, and fusion, which reveals how these fusion methods are implemented in an essential way. Third, we provide an in-depth comparison of their pros and cons and compare their performance in mainstream datasets. Finally, we further summarize current challenges and research trends for realizing the full potential of multi-modal 3D object detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助亭瞳采纳,获得10
刚刚
科研通AI5应助Devil采纳,获得10
刚刚
279发布了新的文献求助10
1秒前
丘比特应助认真的金针菇采纳,获得10
1秒前
2秒前
AlinaLee完成签到,获得积分0
2秒前
Star发布了新的文献求助10
2秒前
2秒前
Orange应助荔枝面采纳,获得30
4秒前
科研通AI6应助火星上如花采纳,获得30
4秒前
5秒前
5秒前
顺心夏山完成签到,获得积分20
6秒前
6秒前
哈哈哈哈哈哈完成签到 ,获得积分10
7秒前
浮游应助敏感元柏采纳,获得10
7秒前
隐形曼青应助jingyi采纳,获得10
8秒前
8秒前
279完成签到,获得积分10
9秒前
wodurbn发布了新的文献求助10
9秒前
高高发布了新的文献求助10
9秒前
科研通AI5应助wyi采纳,获得10
9秒前
顺安发布了新的文献求助10
10秒前
Aliaoovo发布了新的文献求助10
10秒前
ding应助刘琪琪采纳,获得10
10秒前
10秒前
SWJ发布了新的文献求助10
11秒前
11秒前
镇淇张发布了新的文献求助10
11秒前
12秒前
科研通AI5应助王思睿采纳,获得10
13秒前
AlinaLee发布了新的文献求助10
13秒前
bai发布了新的文献求助10
13秒前
14秒前
liuwenjie应助憨憨的小于采纳,获得20
15秒前
所所应助西卡采纳,获得20
15秒前
大孙发布了新的文献求助10
16秒前
17秒前
17秒前
自觉的问旋应助lcy采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5195002
求助须知:如何正确求助?哪些是违规求助? 4377166
关于积分的说明 13631639
捐赠科研通 4232420
什么是DOI,文献DOI怎么找? 2321600
邀请新用户注册赠送积分活动 1319718
关于科研通互助平台的介绍 1270166